LOGIC AND SET THEORY - HOMEWORK 1

OHAD LUTZKY, MAAYAN KESHET

1. Question 1

In the order ' $A \in B^{\prime}, ' A \subseteq B$ ', ' $A \cup B=\emptyset$ ',

- Yes, no, yes
- No, yes, no
- Yes, no, yes
- Same as 1
- Yes, no, yes
- No, yes, no

2. Question 2

- n
- 0
- $n+1$
- Unknown - either n or $n-1$, depending on whether $\{\emptyset\} \in A$
- 2
- 2
- $2^{n}+n$
- 2^{n}

One set with two elements, for which each element is a subset of it, is $\{\emptyset,\{\emptyset\}\}$.

3. Question 3

3.1. Part A.

Proof. We will show mutual containment, from left to right.

$$
\begin{array}{lc}
& a \in A \cap(B \cup C) \\
\Longleftrightarrow & a \in A \text { and } a \in B \cup C \\
\Longleftrightarrow & a \in A \text { and }(a \in B \text { or } a \in C) \\
\Longleftrightarrow & (a \in A \text { and } a \in B) \text { or }(a \in A \text { and } a \in C) \\
\Longleftrightarrow & a \in(A \cap B) \cup(A \cap C)
\end{array}
$$

3.2. Part B.

Proof. We will show mutual containment, from left to right.

$$
\begin{array}{cc}
& a \in A \cup(B \cap C) \\
\Longleftrightarrow & a \in A \text { or } a \in B \cap C \\
\Longleftrightarrow & a \in A \text { or }(a \in B \text { and } a \in C) \\
\Longleftrightarrow & (a \in A \text { or } a \in B) \text { and }(a \in A \text { or } a \in C) \\
\Longleftrightarrow & a \in(A \cup B) \cap(A \cup C) \\
& 1
\end{array}
$$

4. Question 4

4.1. Part A. The claim is true.

Proof. We know that $X \subseteq X^{\prime}, Y \subseteq Y^{\prime}$. This means that, for any x, if $x \in X$ then $x \in X^{\prime}$, and if $x \in Y$ then $x \in Y^{\prime}$. Now, if $z \in X+Y$, this means (by the definition of $X+Y$ that $z=x+y$ such that $x \in X, y \in Y$. However, as we've shown, that means $x \in X^{\prime}$ and $y \in Y^{\prime}$, therefore $z=x+y$ such that $x \in X^{\prime}$ and $y \in Y^{\prime}$, which means that $z \in X^{\prime}+Y^{\prime}$.
4.2. Part B. The claim is false. Take X to be the real numbers and Y to be the imaginary. Take X^{\prime} to be $X \cup\{\sqrt{-1}\}$ and Y^{\prime} to be $Y \cup\{1\}$. Obviously, $X \subsetneq X^{\prime}, Y \subsetneq Y^{\prime}$. But $X+Y=\mathbb{C}$, and $X^{\prime}+Y^{\prime}=\mathbb{C}$ as well, so $X+Y=X^{\prime}+Y^{\prime}$, and the claim is false ${ }^{1}$.

5. Question 5

5.1. Part A. The claim is true.

Proof. We will show mutual containment.

$$
\begin{array}{cc}
& X \in \wp(A) \cap \wp(B) \\
\Longleftrightarrow & X \subseteq A \cap B \\
\Longleftrightarrow & x \in X \Rightarrow x \in A \text { and } x \in B \\
\Longleftrightarrow & X \subseteq A \text { and } X \subseteq B \\
\Longleftrightarrow & X \in \wp(A) \text { and } X \in \wp(B) \\
\Longleftrightarrow & X \in \wp(A) \cap \wp(B)
\end{array}
$$

5.2. Part B. The claim is true.

Proof. First we'll show WLOG that if $A \subseteq B$, then $\wp(A \cup B)=\wp(A) \cup \wp(B)$.
If $A \subseteq B$, then if $x \in A$ then $x \in B$. Therefore, if $x \in A \cup B$, then either $x \in B$, or $x \in A$ - but as we've shown, this means $x \in B$. Therefore $A \cup B \subseteq B$, and since $B \subseteq A \cup B$, we've shown $A \cup B=B$. Thus what we have left to prove is $\wp(B)=\wp(A) \cup \wp(B)$. Again, $\wp(B) \subseteq \wp(A) \cup \wp(B)$, so we only have to show the reverse containment.
$X \in \wp(A) \Rightarrow X \subseteq A$, which means that if $x \in X$, then $x \in A$. However, we know that $A \subseteq B$, so we have $x \in B$, so we have $X \subseteq B$ and therefore $X \in \wp(B)$. We've shown that $\wp(A) \subseteq \wp(B)$, and as we've seen, this shows that $\wp(A) \cup \wp(B) \subseteq \wp(B)$. All in all, we've shown that $\wp(A \cup B)=\wp(A) \cup \wp(B)$.

Now we will show the other direction - if $\wp(A \cup B)=\wp(A) \cup \wp(B)$, then either $A \subseteq B$ or $B \subseteq A$. Assume by negation that $A \nsubseteq B$ and $B \nsubseteq A$. Therefore there exists $a \in A \backslash B$ and $b \in B \backslash A$. Examine the set $F=\{a, b\} . a \in A, b \in B$, therefore $F \subseteq A \cup B$, meaning $F \in \wp(A \cup B)$. Therefore, either $F \in \wp(A)$ or $F \in \wp(B)$, meaning either $F \subseteq A$ or $F \subseteq B . F \nsubseteq A$, because $b \in F$ and $b \notin A$, therefore $F \subseteq B$. But $F \nsubseteq B$, because $a \in F$ and $a \notin B$. We have a contradiction to the assumption, and therefore it is false - either $A \subseteq B$, or $B \subseteq A$.

[^0]5.3. Part C. The claim is not true. Take A to be the even numbers and B the odd. No even number is odd or vice versa, therefore $A \backslash B=\emptyset$. For any set G, $\emptyset \subseteq G$, and therefore $\emptyset \in \wp(G)$. Therefore $\emptyset \in \wp(A \backslash B), \emptyset \in \wp(A)$, and $\emptyset \in \wp(B)$. However, this means that $\emptyset \notin \wp(A) \backslash \wp(B)$, and therefore $\wp(A) \backslash \wp(B) \nsubseteq \wp(A \backslash B)$, and the claim is false.

6. Question 6

6.1. Part A. The claim is true.

Proof. We will prove that $\bigcup_{i \in \mathbb{N}} \Pi_{i} \subseteq \bigcup_{i \in \mathbb{N}} \Sigma_{i}$, and without loss of generality, this will show us the opposite containment as well - and thus we have set equality.

Let us take x such that $x \in \bigcup_{i \in \mathbb{N}} \Pi_{i}$. This means that there exists an i such that $x \in \Pi_{i}$. We know that $\Pi_{i} \subsetneq \Delta_{i+1}$, which tells us that for $j=i+1, x \in \Delta_{j}$. We also know that $\Delta_{i} \subsetneq \Sigma_{i}$, so since $x \in \Delta_{j}$, we now have $x \in \Sigma_{j}$. We have shown, therefore, that there exists a j such that $x \in \Sigma_{j}$, which means that $x \in \bigcup_{i \in \mathbb{N}} \Sigma_{i}$.
6.2. Part B. Not true. As a counterexample, take $X=\mathbb{R}$. Now we'll define the sets $\Pi, \Sigma, \Delta: \Sigma_{i}=\{0,1,2, \ldots, 2 i\}, \Pi_{i}=\Sigma_{i}=\{0,1,2, \ldots, 2 i, 2 i+1\}$. The conditions of the question hold: $\Pi_{i}=\Sigma_{i}=\{0,1,2, \ldots, 2 i, 2 i+1\}=\{0,1,2, \ldots, 2 i\} \cup\{2 i+1\}=$ $\Delta_{i} \cup\{2 i+1\}$, so we have $\Delta_{i} \subsetneq \Pi_{i}$ and $\Delta_{i} \subsetneq \Sigma_{i}$, and identically $-\Pi_{i} \subsetneq \Delta_{i+1}$ and $\Sigma_{i} \subsetneq \Delta_{i+1}$. Now, assume by negation that $\bigcup_{i \in \mathbb{N}} \Delta_{i}=X . \sqrt{2} \in X$ (for our choice $X=\mathbb{R}$), therefore there exists some i for which $\sqrt{2} \in \Delta_{i}$, which is absurd since we've constructed Δ_{i} out of natural numbers only. Therefore it cannot be that $\bigcup_{i \in \mathbb{N}} \Delta_{i}=X$.

LOGIC AND SET THEORY - HW 2

OHAD LUTZKY, MAAYAN KESHET

1. Question 1

1.1. Part A. $\langle a\rangle, b=\{\{a\},\{a, b\}\}$
1.1.1. (i). $\cup\langle a\rangle, b=\{a\} \cup\{a, b\}=\{a, b\}$
1.1.2. (ii). $\cap\langle a\rangle, b=\{a\} \cap\{a, b\}=\{a\}$

1.2. Part B.

1.2.1. (i). This implementation meets the demand. First we'll prove that $a=a^{\prime}$ and then we'll prove that $b=b^{\prime}$.

Proof. $\{\{a\},\{a,\{b\}\}\}=\left\{\left\{a^{\prime}\right\},\left\{a^{\prime},\left\{b^{\prime}\right\}\right\}\right\}$. Therefore, $\{a\} \in\left\{\left\{a^{\prime}\right\},\left\{a^{\prime},\left\{b^{\prime}\right\}\right\}\right\}$, which means that either $\{a\}=\left\{a^{\prime}\right\}$ and we're done or that $\{a\}=\left\{a^{\prime},\left\{b^{\prime}\right\}\right\}$, which means either $\{a\}=\left\{a^{\prime}\right\}$ and we're done or $a=\left\{b^{\prime}\right\}$. If $a=\left\{b^{\prime}\right\}$ then $\{\{a\},\{a,\{b\}\}\}=\left\{\left\{a^{\prime}\right\},\left\{a^{\prime}, a\right\}\right\}$ which means that either $\{a\}=\left\{a^{\prime}\right\}$ and we're done or that $\{a\}=\left\{a^{\prime}, a\right\}$, which by itself means $\{a\}=\left\{a^{\prime}\right\} \Rightarrow a=a^{\prime}$. Therefore $a=a^{\prime}$. Now we'll prove the same for b and $b^{\prime} .\{\{a\},\{a,\{b\}\}\}=\left\{\left\{a^{\prime}\right\},\left\{a^{\prime},\left\{b^{\prime}\right\}\right\}\right\}$. Therefore, $\{a,\{b\}\} \in\left\{\left\{a^{\prime}\right\},\left\{a^{\prime},\left\{b^{\prime}\right\}\right\}\right\}$, which means that either $\{a,\{b\}\}=\left\{a^{\prime}\right\}$ or $\{a,\{b\}\}=\left\{a^{\prime},\left\{b^{\prime}\right\}\right\}$.

If $\{a,\{b\}\}=\left\{a^{\prime}\right\}$ then $\{b\}=a^{\prime}=a$. Therefore, $\{\{a\},\{a,\{b\}\}\}=\left\{\{a\},\left\{a, a^{\prime}\right\}\right\}=$ $\left\{\left\{a^{\prime}\right\},\left\{a^{\prime}, a^{\prime}\right\}\right\}=\left\{\left\{a^{\prime}\right\}\right\}$. Therefore $\{\{a\},\{a,\{b\}\}\}=\left\{\left\{a^{\prime}\right\}\right\}=\left\{\left\{a^{\prime}\right\},\left\{a^{\prime},\left\{b^{\prime}\right\}\right\}\right\} \Rightarrow$ $\left\{a^{\prime}\right\}=\left\{a^{\prime},\left\{b^{\prime}\right\}\right\} \Rightarrow\left\{b^{\prime}\right\}=a^{\prime}=\{b\} \Rightarrow b=b^{\prime}$.

If $\{a,\{b\}\}=\left\{a^{\prime},\left\{b^{\prime}\right\}\right\}$ then $\{b\} \in\left\{a^{\prime},\left\{b^{\prime}\right\}\right\}$. Therefore, either $\{b\}=\left\{b^{\prime}\right\}$ and we're done or $\{b\}=a^{\prime}=a$ and as we have shown before $\{b\}=a^{\prime}=a \Rightarrow b=b^{\prime}$.
1.2.2. (ii). This implementation meets the demand.

Proof. Let $\langle a, b\rangle_{o}=\{\{a\},\{a, b\}\}$ be the original model we used for order pairs. Therefore, with this model, $\langle a, b\rangle=\left\{\langle a, b\rangle_{o}\right\}$. Obviously, if $a=a^{\prime}, b=b^{\prime}$, then $\langle a, b\rangle=\left\langle a^{\prime}, b^{\prime}\right\rangle$, so we'll show the other direction.

Assume $\langle a, b\rangle=\left\langle a^{\prime}, b^{\prime}\right\rangle$. Therefore, $\left\{\langle a, b\rangle_{o}\right\}=\left\{\left\langle a^{\prime}, b^{\prime}\right\rangle_{o}\right\}$, which means that $\langle a, b\rangle_{o}=\left\langle a^{\prime}, b^{\prime}\right\rangle_{o}$. As proved in class, this means that $a=a^{\prime}, b=b^{\prime}$.
1.2.3. (iii). This implementation does not meet the demand. For $a=\{0\}, b=$ $1, a^{\prime}=\{1\}, b^{\prime}=0$, we have $\langle a, b\rangle=\left\langle a^{\prime}, b^{\prime}\right\rangle=\{\{0\},\{1\}\}$.

1.3. Part C.

1.3.1. (i).

Proof. Note that $\{a,\{b\}\} \subseteq \wp(B) \cup A$. This shows that $\{\{a,\{b\}\} \subseteq \wp(\wp(B) \cup A)$, which in turn shows that $\{\{a\},\{a,\{b\}\}\} \subseteq \wp(A \cup \wp(B)) \cup \wp(A)$. Therefore,

$$
A \times B=\{\{\{a\},\{a,\{b\}\}\} \in \wp(\wp(A) \cup \wp(A \cup \wp(B))) \mid a \in A, b \in B\}
$$

1.3.2. (ii).

Proof. If we define \times_{o} to be a cartesian product of two sets using \langle,\rangle_{o}, then we've shown in class that for any two sets A, B, there exists a set $X=A \times_{o} B$. By the base assumption of the existence of the powerset of each set, we know there exists $\wp(X)$. For our current ordered pair model, $\langle a, b\rangle=\left\{\langle a, b\rangle_{o}\right\} \in \wp(X)$, therefore the following set exists:

$$
A \times B=\left\{\left\{\langle a, b\rangle_{o}\right\} \in \wp(X) \mid a \in A, b \in B\right\}
$$

2. Question 2

2.1. Part A. The set does not exist.

Proof. Let P be the universal set of powersets, $\mathcal{P}=\{\wp(A): A$ is a set $\}$. Let

$$
P_{0}=\{\wp(X) \in \mathcal{P}: \wp(X) \notin X\}
$$

Assume $\wp\left(P_{0}\right) \in P_{0}$. Therefore, by definition of $P_{0}, \wp\left(P_{0}\right) \notin P_{0}$. Therefore, again by definition of $P_{0}, \wp\left(P_{0}\right) \in P_{0}$. We have a contradiction, therefore \mathcal{P} cannot exist.

2.2. Part B. This set does not exist.

Proof. Let $\mathcal{R}=\{R \subseteq A \times B: A, B$ are sets $\}$ be the set of all relations. Therefore exists the set $\bigcup \mathcal{R}$, which - since A, B can be any sets, and we join all subsets, is $U \times U, U$ being the universal set. But then exists $\operatorname{dom}(U \times U)=U$, which we have proven not to exist.

3. Question 3

3.1. Part A. This part is true.

Proof. $x \in R^{-1}\left(B_{1} \cup B_{2}\right)$. This is true iff exists $y \in B_{1} \cup B_{2}$ such that $(x, y) \in R$, which in turn is true iff exists such a y either in B_{1} or B_{2}. This is true iff $x \in$ $R^{-1}\left(B_{1}\right)$ or $x \in R^{-1}\left(B_{2}\right)$, or in other words, $x \in R^{-1}\left(B_{1}\right) \cup R^{-1}\left(B_{2}\right)$.
3.2. Part B. This part is false. Assume $A=\{0\}, B=\{0,1\}, R=\{\langle 0,0\rangle,\langle 0,1\rangle\}$, and take $B_{1}=\{0\}, B_{2}=\{1\}$. Therefore, $R^{-1}\left(B_{1}\right)=R^{-1}\left(B_{2}\right)=\{0\}$, however $R^{-1}\left(B_{1} \cap B_{2}\right)=R^{-1}(\emptyset)=\emptyset$.

4. Question 4

4.1. Part A. This part is false. Take $A=\{1,2\}, R_{1}=\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle\}$ and $R_{2}=\{\langle 2,2\rangle,\langle 2,1\rangle,\langle 1,1\rangle\}$. It's easy to see that $R_{1} \cup R_{2}$ isn't antisymmetric.

4.2. Part B. This part is true.

Proof. Assuming R_{1}, R_{2} are partial orders over A, we will show that $R_{1} \cap R_{2}$ is a partial order.

Reflexivity: R_{1} is a P.O. over A^{2}, therefore it is reflexive, and $a \in A \Rightarrow$ $\langle a, a\rangle \in R_{1}$. Similarily, R_{2} is a P.O. over A^{2}, thus $a \in A \Rightarrow\langle a, a\rangle \in R_{2}$. So we have $a \in A \Rightarrow\langle a, a\rangle \in R_{1} \cap R_{2}$.
Antisymmetry: If $\langle x, y\rangle,\langle y, x\rangle \in R_{1} \cap R_{2}$, then $\langle x, y\rangle,\langle y, x\rangle \in R_{1}$, therefore since R_{1} is antisymmetric, $x=y$
Transitivity: If $\langle x, y\rangle,\langle y, z\rangle \in R_{1} \cap R_{2}$, then $\langle x, y\rangle,\langle y, z\rangle \in R_{1}$, so by transitivity of $R_{1},\langle x, z\rangle \in R_{1}$, and $\langle x, y\rangle,\langle y, z\rangle \in R_{2}$, so similarily $\langle x, z\rangle \in R_{2}$, therefore $\langle x, z\rangle \in R_{1} \cap R_{2}$.

4.3. Part C. This part is true.

Proof. Assume by negation $R_{1} \neq R_{2} . R_{1} \subseteq R_{2}$, therefore $R_{1} \subsetneq R_{2}$. Therefore exists $R_{2} \ni\langle a, b\rangle \notin R_{1} .\langle a, b\rangle \in R_{2}$, therefore $a, b \in A . R_{1}$ is a F.O. over A, therefore either $\langle a, b\rangle$ or $\langle b, a\rangle \in R_{1}$, and we've already ruled out $\langle a, b\rangle$, so $\langle b, a\rangle \in$ R_{1}. However, $R_{1} \subseteq R_{2}$, therefore $\langle b, a\rangle \in R_{2}$, and since also $\langle a, b\rangle \in R_{2}$, we have $a=b$, by antisymmetry of R_{2}. Therefore, by reflexivity of $R_{1},\langle a, b\rangle \in R_{1}$, in contradiction to the assumption. Therefore $R_{1}=R_{2}$.

5. Question 5

5.1. Part A. This claim is true.

Proof. Assume by negation $m, n \in A, m \neq n$ are both a minimum element in A. Because m is a minimum element, by defenition $(m, n) \in R$. Similarly, because n is a minimum element, by defenition $(n, m) \in R \Rightarrow$ contradiction, because R is antisymmetric. Therefore $m=n$.
5.2. Part B. This part is false. Take $A=\mathbb{Z} \cup\{0.5\}$ and $R=\left\{(a, b) \in Z^{2}: a \leq\right.$ $b\} \cup\{(0.5,0.5)\}$. 0.5 is uniquely minimal, but not a minimum - $(0,0.5) \notin R$.

5.3. Part C.

Proof. We'll prove by induction on $|A|$. For $|A|=1, a$ being the single element of the set, the only possible relation is $\langle a, a\rangle$, therefore a is minimal, and we're done.

Now, assuming the claim is true for $|A|=n$, we'll prove for $|A|=n+1$. We know A is finite, therefore there is a 1-1 function from A on $\{1, \ldots, n\}, n$ being $|A|$. Let a_{i} be the inverse of one such function (it is 1-1 and on, so it has an inverse function). Let $A^{\prime}=A \backslash a_{1}, R^{\prime}=R \backslash\left\{\langle x, y\rangle \mid x=a_{1}\right.$ or $\left.y=a_{1}\right\}$. $\left|A^{\prime}\right|$ would be n, therefore there is a minimal element a_{k} of A^{\prime} by R^{\prime}, and $k \neq 1$ (because a_{1} isn't in $\left.A^{\prime}\right)$. Now we will check minimality for a_{1} and a_{k} by looking at all possible options:

- If neither $\left\langle a_{1}, a_{k}\right\rangle$ nor $\left\langle a_{k}, a_{1}\right\rangle$ are in R, then a_{k} is minimal (and so is a_{1}), so we're done.
- If $\left\langle a_{k}, a_{1}\right\rangle \in R$, then by antisymmetry $\left\langle a_{1}, a_{k}\right\rangle \notin R$, and thus a_{k} is minimal.
- If $\left\langle a_{1}, a_{k}\right\rangle \in R$, we'll show a_{1} is minimal: Assume by negation it is not, therefore there exists $A \ni a_{j} \neq a_{1}, a_{k}$ such that $\left\langle a_{j}, a_{1}\right\rangle \in R$. By transitivity of $R,\left\langle a_{j}, a_{k}\right\rangle \in R$, and by definition of $R^{\prime},\left\langle a_{j}, a_{k}\right\rangle \in R^{\prime}$, in contradiction with a_{k} being minimal in A^{\prime} by R^{\prime}.

6. Question 6

6.1. Part A. The claim is true.

Proof. R is an equivelance, we'll show that it is a sharing relation. Assume that $\langle a, b\rangle,\langle a, c\rangle \in R$. By symmetry, $\langle b, a\rangle \in R$ as well, and by transitivity, $\langle b, c\rangle \in$ R.
6.2. Part B. The claim is true.

Proof. Reflexivity we already have, so we'll show symmetry and transitivity.
Symmetry: Assume $a, b \in A,\langle a, b\rangle \in R$. Because of reflexivity, we have that $\langle a, a\rangle,\langle b, b\rangle \in R$. Since $\langle a, b\rangle,\langle a, a\rangle \in R$, by sharing we have that $\langle b, a\rangle \in R$.
Transitivity: Assume $a, b, c \in A,\langle a, b\rangle,\langle b, c\rangle \in R$. By reflexivity we have that $\langle a, a\rangle,\langle b, b\rangle,\langle c, c\rangle \in R$, and by symmetry (we've proven), we have that $\langle b, a\rangle \in R$. Therefore, by sharing we have that $\langle a, c\rangle \in R$.
6.3. Part C. The claim is false. $\{\langle 1,3\rangle,\langle 1,2\rangle,\langle 2,3\rangle\}$ is a sharing relation, but it is not symmetric.

LOGIC AND SET THEORY HW 3

OHAD LUTZKY, MAAYAN KESHET

1. Question 2

1.1. Part A. We need to prove that $L=\left\{(a, a) \in A^{2} \mid a \in \operatorname{range}(R)\right\} \subseteq R^{-1} \circ R$

Proof. $(a, a) \in L$, therefore $a \in \operatorname{range}(R)$. Therefore exists b such that $(b, a) \in R$, which means $(a, b) \in R^{-1}$. We've shown that there exists a "shared" b such that $(a, b) \in R^{-1},(b, a) \in R$, therefore $(a, a) \in R^{-1} \circ R$.
1.2. Part B. We need to prove that $L^{\prime}=\left\{(a, a) \in A^{2} \mid a \in \operatorname{dom}(R)\right\} \subseteq R \circ R^{-1}$.

Proof. $(a, a) \in L^{\prime}$, therefore $a \in \operatorname{dom}(R)$. Therefore exists b such that $(a, b) \in R$, which means $(b, a) \in R^{-1}$. Therefore, as before, $(a, a) \in R \circ R^{-1}$.
1.3. Part C. The assumption that for each $a \in A$ there is at most one b so $(a, b) \in$ R can be expressed thus: If $(a, b),\left(a, b^{\prime}\right) \in R$, then $b=b^{\prime}$. Now we want to show equality - we've shown one direction in (??), so we we'll show the other - that is, that $R^{-1} \circ R \subseteq L$.

Proof. $(a, b) \in R^{-1} \circ R$. Therefore there exists c such that $(a, c) \in R^{-1},(c, b) \in R$. We then know that $(c, a) \in R$, and since also $(c, b) \in R$, then by the assumption, $a=b$. Furthermore, $(c, a) \in R$, which means that $a \in \operatorname{range}(R)$, and thus $(a, b) \in$ L.
1.4. Part D. Assume that if $(a, b),\left(a^{\prime}, b\right) \in R$ then $a=a^{\prime}$. Then the claim is true. Again, we only have to show that $R \circ R^{-1} \subseteq L^{\prime}$.

Proof. $(a, b) \in R \circ R^{-1}$, therefore exists c so $(a, c) \in R,(c, b) \in R^{-1}$. Then $(b, c) \in R$, and by our assumption, we have $a=b$. Furthermore, $(a, c) \in R$, which means that $a \in \operatorname{dom}(R)$, and altogether we have $(a, b) \in L^{\prime}$.

2. Question 3

2.1. Part A. No, take $R=\{(1,1),(1,2),(2,1),(2,2)\}$ and $S=\{(2,2),(2,3),(3,2),(3,3)\}$. R and S are equivalences, but $(1,2),(2,3) \in R \cup S \nRightarrow(1,3) \notin A \cup B$.
2.2. Part B. Yes, $R \cap S$ is an equivalence.

Proof.
Reflexivity: $a \in A$ and R, S are equivalences $\Rightarrow(a, a) \in R, S \Rightarrow(a, a) \in$ $R \cap S$.
Symmetry: $(a, b) \in R \cap S \Rightarrow(a, b) \in R, S \Rightarrow(b, a) \in R, S \Rightarrow(b, a) \in R \cap S$.
Transitivity: $(a, b),(b, c) \in R \cap S \Rightarrow(a, b),(b, c) \in R, S \Rightarrow(a, c) \in R, S \Rightarrow$ $(a, c) \in R \cap S$.
2.3. Part C. Yes, R^{-1} is an equivalence.

Proof.
Reflexivity: $a \in A \Rightarrow(a, a) \in R \Rightarrow(a, a) \in R^{-1}$.
Symmetry: $(a, b) \in R^{-1} \Rightarrow(b, a) \in R$ and by symmetry of $R,(a, b) \in R \Rightarrow$ $(b, a) \in R^{-1}$.
Transitivity: $(a, b),(b, c) \in R^{-1} \Rightarrow(b, a),(c, b) \in R$ and by symmetry of $R,(a, b),(b, c) \in R$ and because of transitivity of $R,(a, c) \in R$ and by symmetry of $R,(c, a) \in R \Rightarrow(a, c) \in R^{-1}$.
2.4. Part D. The claim is false. Take $R=\{(1,1),(2,2),(3,3),(1,2),(2,1)\}$, $S^{-1}=\{(1,1),(2,2),(3,3),(2,3),(3,2)\}$, therefore

$$
R \circ S^{-1}=\{(1,1),(2,2),(3,3),(1,2),(1,3),(2,1),(3,2),(3,3)\}
$$

and $(3,1) \notin R \circ S^{-1}$
2.5. Part E. The claim is true.

Proof. First we'll prove that if $R \neq S$, then $A / R \neq A / S$.
We know that $R \neq S$, so we'll assume WLOG that there is a pair $a, b \in A$ such that $(a, b) \in R \backslash S$. Therefore, $b \in[a]_{R}, b \notin[a]_{S}$. By definition, $[a]_{R} \in A / R$, and we'll show that $[a]_{R} \notin A / S$.

Assume by negation that in fact $[a]_{R} \in A / S$. We know $[a]_{S} \in A / S$, and we know 1 that A / S is a division. Since $a \in[a]_{R},[a]_{S}$, then $[a]_{R} \cap[a]_{S} \neq \emptyset$, and by definition of a division this is only possible if $[a]_{R}=[a]_{S}$. And since $b \in[a]_{R}$, we have that $b \in[a]_{S}$, and therefore $(a, b) \in S$, in contradiction to the assumption. Therefore, $A / R \neq A / S$.

Now we'll prove that if $A / R \neq A / S$, then $R \neq S$. We'll assume WLOG that there exists $a \in A$ such that $[a]_{R} \in A / R$ but $[a]_{R} \notin A / S$. By definition of A / S, $[a]_{S} \in A / S$, and since $[a]_{R} \notin A / S$ this means that $[a]_{R} \neq[a]_{S}$. Then, again WLOG, we'll assume that there exists $b \in[a]_{R} \backslash[a]_{S}$, and therefore $(a, b) \in R \backslash S$.

3. Question 4

3.1. Part C.

Proof. First we'll show that $E_{A / R} \subseteq R$: Assume $(a, b) \in E_{A / R}$. Therefore exists a set $p \in A / R$ such that $a, b \in p . p$ could be written as $[a]_{R}$, and we have that $b \in[a]_{R}$, therefore $(a, b) \in R$.

Now we'll show that $R \subseteq E_{A / R}$. Assume $(a, b) \in R$, therefore exists $[a]_{R} \in A / R$, and $b \in[a]_{R}$. Assign $p=[a]_{R}$, and you have that there exists p such that $a, b \in p$ and $p \in A / R$, therefore $(a, b) \in E_{A / R}$.

3.2. Part D.

Lemma 1. Assume P is a division of $A, B \in P$, and $a \in B$. Then $B=[a]_{E_{P}}$.
Proof of Lemma ??. Assume $b \in B$. Then by definition of $E_{P},(a, b) \in E_{P}$, and therefore $b \in[a]_{E_{P}}$. We've shown $B \subseteq[a]_{E_{P}}$.

Now assume $c \in[a]_{E_{P}}$. This means that $(a, c) \in E_{P}$, and since P is a division over A, then $E_{P} \subseteq A \times A$, and therefore $c \in A$. Now, by definition of E_{P}, this means that there is $B^{\prime} \in P$ such that $a, c \in P$, and since $a \in B$, then $B^{\prime} \cap B \neq \emptyset$.

[^1]And by definition of a division, this means that $B=B^{\prime}$. Therefore, $c \in B$. We've shown $[a]_{E_{P}} \subseteq B$.

We have thus shown that $B=[a]_{E_{P}}$.
Proof of ??. Assume $B \in P$, and $a \in B$, then by Lemma ??, $B=[a]_{E_{P}}$. Therefore $B \in A / E_{P}$. We've shown $P \subseteq A / E_{P}$.

Assume $a \in A$, therefore $[a]_{E_{P}} \in A / E_{P}$. By definition of a division, we know that $\bigcup P=A$, therefore there exists $B \in P$ such that $a \in B$. By Lemma ??, $B=[a]_{E_{P}}$, and thus $[a]_{E_{P}} \in P$. We've shown that $A / E_{P} \subseteq P$.

We have thus shown that $P=A / E_{P}$.

4. Question 7

4.1. Part A. The claim is false. Take $A=\{0\}, B=\{0,1\}, F=\left\{f_{1}: x \mapsto 0, f_{2}\right.$: $x \mapsto 1\} . f_{1}, f_{2}$ are not onto B, and yet F covers B.
4.2. Part B. The claim is true.

Proof. Let \tilde{f} be onto B. Therefore, for each $b \in B$, there is $a \in A$ such that $\tilde{f}(a)=b$, therefore F covers B.
4.3. Part C. The claim is false. Take $A=\{0,1\}, B=\{0\}, F=\left\{f_{1}: x \mapsto 0\right\}$. $C_{0}=\left\{f_{1}\right\}$, but $f_{1}(0)=f_{1}(1)$, so f_{1} isn't 1-1.
4.4. Part D. The claim is false. Take $A=B=\{0,1\}, F=\left\{f_{1}: x \mapsto x, f_{2}: x \mapsto\right.$ $1-x\}$. f_{1}, f_{2} are 1-1, but $\left|C_{0}\right|=2$.

5. Question 8

5.1. Part A. The claim is false. Take $i=1, j=3, f_{2}: x \mapsto 2, f_{3}: x \mapsto 3$. Obviously, $\left(f_{2}, f_{3}\right) \in R_{3}$. Assume by negation that $f\left(2, f_{3}\right) \in R_{1} \circ R_{3}$, then exists z such that $\left(f_{2}, z\right) \in R_{1}$, therefore $f_{2} \in N_{1}^{\mathbb{N}}$, which it clearly isn't.

5.2. Part B. The claim is true.

Proof. We will begin by making a simplification of the definition of R_{i}. By definition,

$$
N_{i}^{\mathbb{N}}=\left\{f \in \mathbb{N}^{\mathbb{N}} \mid \text { For all } k \in \mathbb{N}, f(k) \leq i\right\}
$$

Therefore,

$$
R_{i}=\left\{(f, g) \in \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \mid \text { For all } k \in \mathbb{N}, f(k) \leq g(k) \leq i\right\}
$$

Now we will show that $R_{j} \circ R_{i} \subseteq R_{i}$. Assume $(f, g) \in R_{j} \circ R_{i}$, therefore there exists z such that $(f, z) \in R_{j},(z, g) \in R_{i}$. This means that for any $k \in \mathbb{N}$, $f(k) \leq z(k) \leq j$ and $z(k) \leq g(k) \leq i$. By transitivity of the \leq relation, we have that $f(k) \leq g(k) \leq i$, therefore $(f, g) \in R_{i}$.

Now we will show that $R_{i} \subseteq R_{j} \circ R_{i}$. Assume $(f, g) \in R_{i}$, therefore for all $k \in \mathbb{N}$, $f(k) \leq g(k) \leq i$. Especially, $f(k) \leq f(k) \leq i$, and since $i \leq j, f(k) \leq f(k) \leq j$, and therefore $(f, f) \in R_{j}$. Since $(f, g) \in R_{i}$ as well, we have that $(f, g) \in R_{i} \circ R_{j}$.

LOGIC AND SET THEORY - HW 4

OHAD LUTZKY, MAAYAN KESHET

1. Question 1

$$
B=\{0\}, F=\{x \mapsto x+2\}
$$

2. Question 3

2.1. Part A. This claim is true.

Proof. Mark $a_{1}, a_{2}, \ldots, a_{n+k}=\sigma_{1}, \ldots, \sigma_{n}, \tau_{1}, \ldots, \tau_{k} . \sigma_{1}, \ldots, \sigma_{n}$ is a creation sequence, therefore for any $1 \leq i \leq n$, either $\sigma_{i} \in B$ or $\sigma_{i}=f\left(\sigma_{k}, \sigma_{l}, \sigma_{m}, \ldots\right)$ such that $f \in F$ and $k, l, m, \cdots<i$. Therefore, for any such i, either $a_{i} \in B$ or $a_{i}=f\left(a_{k}, a_{l}, a_{m}, \ldots\right)$ such that $f \in F$ and $k, l, m, \cdots<i$. Similarily, $\tau_{1}, \ldots, \tau_{k}$ is a creation sequence, so for all $n+1 \leq i \leq n+k$, either $a_{i} \in B$ or $a_{i}=$ $f\left(a_{k}, a_{l}, a_{m}, \ldots\right)$ such that $n+1 \leq k, l, m, \cdots \leq i$, and privately $k, l, m, \cdots<i$. Therefore a_{1}, \ldots, a_{n+k} is a creation sequence.
2.2. Part B. This claim is true, and the previous proof holds with a slight change - replace all occurences of n with 2 .
2.3. Part C. This claim is true, and the previous proof holds with alterations. Despite the intertwining of the series, the claim that each a_{i} is still either an element of B or a function of previous elements holds.
2.4. Part D. This claim is false. Take $B=\{0\}, F=\{x \mapsto x+1\}, n=1, \sigma_{1}=$ $0, k=3, \tau_{1}=0, \tau_{2}=1, \tau_{3}=2$. Then the proposed sequence is $0,2,1,0$ and the second entry, 2 , is not in the base and not a function of 0 .

3. Question 4

3.1. Part A. The claim is false. Let $Y=\mathbb{N}, B=\{\{n\} \in \wp(\mathbb{N}) \mid n \in \mathbb{N}\}$. We will show that $\bigcup B=\mathbb{N}$ and $\mathbb{N} \notin X_{B, F}$.

Proof. First we will show that $\bigcup B=\mathbb{N}$. $\bigcup B \subseteq \mathbb{N}$: By definition of B, if $n \in A$ and $A \in B$, then $A=\{n\}$ and $n \in \mathbb{N}$. So we will show that $\mathbb{N} \subseteq \bigcup B$. If $n \in \mathbb{N}$, then $\{n\} \in \wp(\mathbb{N})$, and again by definition of $B,\{n\} \in B$, therefore $n \in \bigcup B$. We have shown that $\bigcup B=\mathbb{N}$.

Now we will show that $\mathbb{N} \notin X_{B, F}$. We will do this by showing that for any $A \in X_{B, F}, A$ is finite. For the base, this is shown by definition, because each element $b \in B=\{n\}$, and is therefore finite. As for F, we have shown in class that for any two finite sets $a, b, a \cup b$ and $a \cap b$ are finite. Therefore any $A \in X_{B, F}$ is finite. Seeing as \mathbb{N} is not finite, then $\mathbb{N} \notin X_{B, F}$.
3.2. Part B. The claim is false. Select $Y=\mathbb{N}, B=\{\mathbb{N} \backslash\{n\} \in \wp(\mathbb{N}) \mid n \in \mathbb{N}\}$. We will show that $\bigcap B \notin X_{B, F}$.
Claim 1. $\cap B=\emptyset$
Proof of Claim ??. Assume by negation that there exists $b \in \bigcap B$. Therefore $b \in \mathbb{N}$ and for any $A \in B, b \in A$. But by definition of $B, \mathbb{N} \backslash\{b\} \in B$, therefore $b \notin \bigcap B$.

Lemma 1. Assume $C \subseteq \mathbb{N}$ is a finite set, then $\mathbb{N} \backslash C$ is infinite.
Proof of Lemma ??. We have shown in class that for any finite set $C \subseteq \mathbb{N}$, there is a maximal element max C. Define $f: \mathbb{N} \rightarrow \mathbb{N} \backslash C$ such that $f(i)=\max (C)+1+i$. Obviously, $\max (C)+1+i \in \mathbb{N} \backslash C$.

We will now show f is 1-1. Assume there exist $i_{1}, i_{2} \in \mathbb{N}$ such that $f\left(i_{1}\right)=f\left(i_{2}\right)$. Then $\max (C)+1+i_{1}=\max (C)+1+i_{2}$, and we have that $i_{1}=i_{2}$. We have shown a 1-1 function from \mathbb{N} to $\mathbb{N} \backslash C$, therefore $N \backslash C$ is infinite.

Claim 2. Assume $B=\{\mathbb{N} \backslash\{n\} \in \wp(\mathbb{N}) \mid n \in N\}, F=\left\{f_{\cap}, f_{\cup}\right\}$ and let $K=$ $\{\mathbb{N} \backslash C \in \wp(\mathbb{N}) \mid C \subseteq \mathbb{N}$ is finite $\}$, then $X_{B, F} \subseteq K$.
Proof of Claim ??.
Base: Each $A \in B$ is explicitly defined as $\mathbb{N} \backslash\{n\},\{n\}$ obviously being finite. Therefore $B \subseteq K$.
Closure: Assume $A_{1}, A_{2} \in K$. Then by definition, $A_{1}=\mathbb{N} \backslash C_{1}, A_{2}=\mathbb{N} \backslash C_{2}$, and C_{1}, C_{2} are finite. Therefore:
f_{\cup} : By De-Morgan's laws, $f_{\cup}\left(A_{1}, A_{2}\right)=\left(\mathbb{N} \backslash C_{1}\right) \cup\left(\mathbb{N} \backslash C_{2}=\mathbb{N} \backslash\left(C_{1} \cap C_{2}\right)\right.$, and as we've shown in class that, seeing as C_{1}, C_{2} are finite, so is $C_{1} \cap C_{2}$.
f_{\cap} : By De-Morgan's laws, $f_{\cap}\left(A_{1}, A_{2}\right)=\left(\mathbb{N} \backslash C_{1}\right) \cap\left(\mathbb{N} \backslash C_{2}=\mathbb{N} \backslash\left(C_{1} \cup C_{2}\right)\right.$, and as we've shown in class that, seeing as C_{1}, C_{2} are finite, so is $C_{1} \cup C_{2}$.

Proof of Part ??. We've shown that $\bigcap B=\emptyset$, therefore $\bigcap B$ is finite. Therefore, by Lemma ??, cannot be written as $\mathbb{N} \backslash C, C$ being finite, therefore $\bigcap B \notin K$. And by Claim ??, $X_{B, F} \subseteq K$, therefore $\bigcap B \notin X_{B, F}$.

4. Question 6

Proof. Let $B_{v}=\{v\}, F=\left\{f_{\sigma_{i}} \in \Sigma^{*} \times \Sigma^{*} \mid \sigma_{i} \in \Sigma, f_{\sigma_{i}}(w)=w \sigma_{i}\right\}$. Then by definition, Cone $(v)=X_{B_{v}, F}$. We'll also mark $K_{v}=\left\{w \in \Sigma^{*} \mid\right.$ Exists $u \in \Sigma^{*}$ such that $w=$ $v u\}$. We now need to show that $\operatorname{Cone}(v)=K_{v}$.

We'll show that $K_{v} \subseteq \operatorname{Cone}(v)$. Assume $w \in K_{v}$, then by definition there exists a word $u \in \Sigma^{*}$ such that $w=v u$. $u \in \Sigma^{*}$, so it can be written $u=\sigma_{1} \sigma_{2} \ldots \sigma_{n}, \sigma_{i} \in \Sigma$. We will show a creation sequence for $v u$ in $X_{B_{v}, F}$:

$$
\begin{array}{rll}
a_{1}: v & \text { Base } \\
a_{2}: v \sigma_{1} & & f_{\sigma_{1}}\left(a_{1}\right) \\
a_{3}: v \sigma_{1} \sigma_{2} & & f_{\sigma_{2}}\left(a_{2}\right) \\
& \vdots & \\
a_{n}: v \sigma_{1} \sigma_{2} \ldots \sigma_{n} & & f_{\sigma_{n}}\left(a_{n-1}\right)
\end{array}
$$

Therefore $v u \in X_{B_{v}, F}$, which means $w \in \operatorname{Cone}(v)$. We have shown that $K_{v} \subseteq$ Cone (v).

We will now show that $\operatorname{Cone}(v) \subseteq K_{v}$ by induction.
Base: $v=v \epsilon, \epsilon \in \Sigma^{* 1}$, therefore $v \in K_{v}$.
Closure: $w \in K_{v}$, therefore $w=v u$ for some $u \in \Sigma^{*}$. For any $\sigma_{i} \in \Sigma$, $f_{\sigma_{i}}(w)=v u \sigma_{i}$. By definition of $\Sigma^{*}, u \sigma_{i} \in \Sigma^{*}$, therefore $v u \sigma_{i}=f_{\sigma_{i}}(w) \in$ K_{v}.
We have shown that Cone $(v)=K_{v}$.

5. Question 7

5.1. Part A. The claim is true. We will show a creation sequence for $[-7, \infty)$ in $I_{A, P}$.

$$
\begin{aligned}
a_{1}:[-7,0] & \text { Base } \\
a_{2}:[0, \infty) & \text { Base } \\
a_{3}:[-7, \infty) & f\left(a_{1}, a_{2}\right)
\end{aligned}
$$

5.2. Part B. The claim is false.

Proof. Let $Y=\{[a, b] \in \wp(\mathbb{R}) \mid a, b \in \mathbb{Q}, a \leq b\} \cup\{[a, \infty) \in \wp(\mathbb{R}) \mid a \in \mathbb{Q}, a \leq 0\}$. We will show that $I_{A, P} \subseteq Y$ by induction. Obviously, $[7, \infty) \notin Y$, therefore $[7, \infty) \notin$ $I_{A, P}$.

Base: If $Z=[a, b] \in A$, therefore $Z \in Y$ (we defined the compact segments identically). If $Z=[0, \infty)$, then since $0 \leq 0, Z \in Y$ again.
Closure: Assume $Z_{1}, Z_{2} \in Y$. We will show that $f\left(Z_{1}, Z_{2}\right) \in Y$.

- If $Z_{1}=[a, \infty), Z_{2}=[b, c]$ or $Z_{2}=[b, \infty)$, then since $b \in \mathbb{Q}, b \neq \infty$, and thus $f\left(Z_{1}, Z_{2}\right)=Z_{1} \in Y$.
- If $Z_{1}=[a, b]$,
- If $Z_{2}=[c, d]$ or $[c, \infty)$, and $c \neq b$, then $f\left(Z_{1}, Z_{2}\right)=Z_{1} \in Y$.
- If $Z_{2}=[b, c]$ then $f\left(Z_{1}, Z_{2}\right)=[a, c] \in Y$.
- If $Z_{2}=[b, \infty)$ then since $Z_{2} \in Y, b \leq 0$, and since $Z_{1} \in Y$, $a \leq b$, and therefore $a \leq 0 . f\left(Z_{1}, Z_{2}\right)=[a, \infty)$, and since $a \leq 0$, we have $f\left(Z_{1}, Z_{2}\right) \in Y$.

5.3. Part C.

Reflextivity: True.
Proof. Take $a \in A . a \subseteq a$ and $\min (a)=\min (a)$. Therefore, a is a prefix of $a \Rightarrow(a, a) \in S$.

Symmetry: False. Take $a=[4,5], b=[1,5] \cdot a=[4,5] \subseteq[1,5]=b$ and $\max (a)=5=\max (b)$. Therefore, a is a suffix of $b \Rightarrow(a, b) \in S$. But, $b=[1,5] \nsubseteq[4,5]=a \Rightarrow b$ is neither a prefix nor a suffix of $a . \Rightarrow(b, a) \notin S$.
Anti-Symmetry: True.
Proof. Assume $(a, b),(b, a) \in S$. We'll show $a=b$. $(a, b) \in S \Rightarrow a \subseteq b$ and $(b, a) \in S \Rightarrow b \subseteq a$. Therefore, $a=b$.

[^2]Transitivity: False. Take $a=[2,3], b=[1,3], c=[1,4] \in A . a=[2,3] \subseteq$ $[1,3]=b$ and $\max (a)=3=\max (b)$. Therefore, a is a suffix of $b \Rightarrow(a, b) \in$ S.
$b=[1,3] \subseteq[1,4]=c$ and $\min (b)=1=\min (c)$. Therefore b is a prefix of $c \Rightarrow(b, c) \in S$. But $\min (a)=2 \neq 1=\min (c)$ and $\max (a)=3 \neq 4=$ $\max (c) \Rightarrow a$ is neither a prefix nor a suffix of $c \Rightarrow(a, c) \notin S$.

LOGIC \& SET THEORY HW 5

OHAD LUTZKY, MAAYAN KESHET

1. Question 1

1.1. $\mathbf{B} \rightarrow \mathbf{A}$.

Proof. Assume there exists a subset $B \subseteq A$ such that $B \sim \mathbb{N}$. Therefore there exists a function $f: \mathbb{N} \rightarrow B$ such that f is $1-1$ and onto B. Since $B \subseteq A$, then f is privately also a 1-1 function $f: \mathbb{N} \rightarrow A$.

1.2. $\mathbf{A} \rightarrow \mathbf{C}$.

Proof. Let $f: \mathbb{N} \rightarrow A$ be a 1-1 function. Therefore, for any $a \in \operatorname{Range}(f)$, we can uniquely define $f^{-1}(a)$ (since f is $1-1$, there exists only one pair (b, a), therefore $f^{-1}=b$ is well-defined). We will therefore define a function $g: A \rightarrow A$ that maps any $a \in \operatorname{Range}(f)$ to its "following" element, and any other a to itself. Formally,

$$
g(a)= \begin{cases}f\left(f^{-1}(a)+1\right), & a \in \operatorname{Range}(f) \tag{1}\\ a, & a \notin \operatorname{Range}(f)\end{cases}
$$

It's easy to see from (??) that g is well-defined as a function - for every $a \in A$ we define a unique $g(a)$. Furthermore, g is 1-1: Assume $g(a)=g(b)$. Therefore,

- If $a \notin$ Range (f), then trivially $g(a)=g(b)=a=b$.
- If $a \in \operatorname{Range}(f)$, then $g(a)=f(\ldots)$, therefore also $g(a) \in \operatorname{Range}(f)$. In this case, $g(b) \in \operatorname{Range}(f)$ as well, and thus - by definition of $g, b \in \operatorname{Range}(f)$ (because otherwise, if $b \notin \operatorname{Range}(f)$, then neither is $g(b))$. Therefore we have that $f\left(f^{-1}(a)+1\right)=f\left(f^{-1}(b)+1\right)$, and because f is $1-1$, we have that $f^{-1}(a)=f^{-1}(b)$, and then since f is a function, f^{-1} is $1-1$, and thus $a=b$.
All that remains is to show that g isn't onto A. We will show that there is no $k \in A$ such that $g(k)=f(0)$. For any $k \in A$,
- If $k \notin \operatorname{Range}(f)$, then $g(k)=k \notin \operatorname{Range}(f)$, and privately $g(k) \neq f(0)$.
- If $k \in \operatorname{Range}(f)$, then $g(k)=f\left(f^{-1}(k)+1\right)$. Seeing as $\operatorname{dom}(f)=\mathbb{N}$, then $f^{-1}(k) \geq 0$, thus $f^{-1}(k)+1>0$, therefore $g(k) \neq f(0)$.
All in all, we've shown a 1-1 function $g: A \rightarrow A$ that is not onto A.

1.3. $\mathbf{C} \rightarrow \mathbf{B}$.

Proof. Assume there exists a function $g: A \rightarrow A$ which is 1-1 but not onto A. Therefore exists some $\tilde{a} \in A \backslash \operatorname{Range}(g)$. Define therefore a function $f: \mathbb{N} \rightarrow A$ as such:

$$
f(i)= \begin{cases}\tilde{a}, & i=0 \tag{2}\\ g(f(i-1)), & i \geq 1\end{cases}
$$

Now define $B=$ Range (f). Obviously f is onto B, and since $g: A \rightarrow A$, then $B \subseteq A$. All that remains is to show that f is $1-1$. We'll prove by induction on i :

Base: $(i=0)$ If $f(0)=f(x)$, then $f(x)=\tilde{a} \notin \operatorname{Range}(g)$, and therefore by $(? ?), x=0$.
Closure: Assume that if for any $x, f(i)=f(x)$ then $x=i$. Therefore, if $f(i+1)=f(y)$, then $g(f(y-1))=g(f(i))$, and since g is 1-1, $f(y-1)=f(i)$, and by the inductive assumption, $i=y-1$, which means that $y=i+1$.
We've shown a function $f: \mathbb{N} \rightarrow B \subseteq A$ such that f is 1-1 and onto B, therefore $B \sim \mathbb{N}$.

2. Question 2

2.1. Part A. The set is countable. It's obvious that the given set A is of same cardinality as $\mathbb{N} \times \mathbb{N}$, because for each relation R we are given, since it has only one pair, it can be written $\{(a, b)\}$, so we can map using the function $f: A \rightarrow \mathbb{N} \times \mathbb{N}$: $\{(a, b)\} \mapsto(a, b)$. Obviously this function is 1-1 and onto $\mathbb{N} \times \mathbb{N}$, because each pair can be created and different pairs are created by different elements of A. All that remains is to show that $\mathbb{N} \times \mathbb{N}$ is countable. We will write the elements of $\mathbb{N} \times \mathbb{N}$:

$(0,0)$	$(0,1)$	$(0,2)$	\ldots
$(1,0)$	$(1,1)$	$(1,2)$	\ldots
$(2,0)$	$(2,1)$	$(2,2)$	\ldots
\vdots	\vdots	\vdots	\ddots

We can count members of $\mathbb{N} \times \mathbb{N}$ by following the top-right to bottom-left diagonals. That is, the enumeration is $(0,0),(0,1),(1,0),(0,2),(1,1),(2,0), \ldots$ It's clear to see that we arrive at every single pair in $\mathbb{N} \times \mathbb{N}$ in finite time: In level 0 , we count $(0,0)$, in level 1 we count $(0,1),(1,0)$, in level i we count $(0, i),(1, i-$ $1),(2, i-2), \ldots,(i, 0)$ - that is, in level i we count all of the vectors (a, b) such that $a+b=i$. Therefore, we arrive at each (a, b) no later than at level $a+b$, and thus before each element (a, b) we count only a finite number of elements. Thus $\mathbb{N} \times \mathbb{N}$ is countable.
A is also infinite. This is because $f: i \mapsto\{(i, 0)\}$ is clearly a 1-1 function from \mathbb{N} to A.
2.2. Part B. The set is countable. We will first count the empty set. Then we will count $\{(0,0)\}$. Then we will count all of the relations R that, for each pair $(a, b) \in R, a+b \leq 1$. At each stage i we will count all of the relations R such that for each pair $(a, b) \in R, a+b \leq i$. As we can see from the table in the previous part, that all of the possible pairs in this set are from the triangle between $(i, 0),(0,0),(0, i)$, and there are $S=\sum_{k=1}^{i} k$ elements in this triangle, and thus 2^{S} possible relations as such. Since i is finite, so are S and 2^{S}, and thus at each stage we count only a finite number of elements. For each relation in the set, we are given that it contains a finite number of pairs, therefore, if sorted by sum $((a, b) \mapsto a+b)$, they have a maximum sum $a^{\prime}+b^{\prime}$, and thus we will reach them in the finite stage $a^{\prime}+b^{\prime}$. Therefore, we reach each relation in the set in a finite number of steps.

The set is also infinite, we can use the same function as in Part A.
2.3. Part C. The set is non-countable. This is because each element of it is any possible $R \subseteq \mathbb{N} \times \mathbb{N}$. Therefore this set is precisely $\wp(\mathbb{N} \times \mathbb{N})$. Seeing as $\mathbb{N} \times \mathbb{N}$ is infinite (and countable), then $\wp(\mathbb{N} \times \mathbb{N})$ is, as we've learnt in class, uncountable.

3. Question 3

3.1. Part A.

Lemma 1. If A is countable and F is finite, then $F(A)$ is countable.

Proof of Lemma ??. A is countable, therefore $A=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\} . F$ is finite, therefore $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{p}\right\}$. We will count the elements of $F(A)$ by function: For each function we will iterate diagonally over possible values of indexes of a. That is, at step j, first we will count all $f_{1}\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{\left.i_{n\left(f_{1}\right)}\right)}\right)$ such that $\sum_{k=1}^{n\left(f_{1}\right)} i_{k}=j$. We will then do the same for f_{2}, f_{3}, and so on until f_{p}, and then move on to step $j+1$. It's clear that there are a finite number of such vectors for which the sum of the indexes is less than j for any finite j, and since we have a finite number of functions, then each step will count a finite number of elements in $F(A)$, and we've generated all possible values of F resulting from A, thus $F(A)$ has been counted and is, as such, countable.

Proof of Part A. We will prove by induction.
Base: For $i=0, D^{0}=B$, and as we are given, is countable.
Closure: Assume that D^{i} is countable. By Lemma ??, $F\left(D^{i}\right)$ is also countable, and as we've seen in class, a union of two countable sets is countable.

3.2. Part B.

Proof. Assume $x \in X_{B, F}$. Therefore, x has a finite creation sequence $\left\{x_{i}\right\}$ such that for each i, either $x_{i} \in B$ or $x_{i}=f\left(x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{n(f)}}\right)$ such that $f \in F$ and for all $k, j_{k}<i$. There also exists a finite n such that $x=x_{n}$. Now, if $x \in B$, then trivially $x \in \bigcup_{i \in \mathbb{N}} D^{i}$. Otherwise, by the construction of F, for each x_{i} there exists j such that $x_{i} \in D^{j}$. Therefore, there exists such j that all x_{i} fori $; \mathrm{n} \in D^{j}$, and therefore $x_{n}=x \in D^{j+1}$, and thus $x_{n} \in \bigcup_{i \in \mathbb{N}} D^{i}$.

Now assume $x \in \bigcup_{i \in \mathbb{N}} D^{i}$. Therefore there exists such j that $x \in D^{j}$. By the construction of $F\left(D^{i}\right)$, for every i, D^{i} is comprised of elements x_{i} such that either $x_{i} \in B$ or $x_{i}=f\left(x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{n(f)}}\right)$ such that $f \in F$ and for all $k, j_{k}<i$. Therefore this holds true for x_{n} as well, and the relevant x_{i} are a proper creation sequence for x_{i} in $X_{B, F}$.
3.3. Part C. We have shown that under the given conditions, D^{i} is countable for any i. Therefore $\bigcup_{i \in \mathbb{N}} D^{i}$ is a countable union of countable sets, and as we've shown in class - it is therefore itself countable. And as we've shown, it is equal to $X_{B, F}$, so it, in turn, is also countable.

4. Question 4

4.1. Part A. The claim is false. Take $A=\mathbb{Z}, C=\mathbb{N}, B=\mathbb{N}, D=\mathbb{Z}$. We've already shown all of these sets to be infinite and countable, thus all of equal cardinality. As we know, $\mathbb{N} \subseteq \mathbb{Z}$, therefore $C \backslash D=\emptyset$, which is finite. However, $A \backslash B=\mathbb{Z} \backslash \mathbb{N}=\mathbb{Z}^{-}$. We will show that $\mathbb{Z}^{-} \sim \mathbb{N}$ - take $f:(-z) \mapsto z . f$ is trivially $1-1$ and onto \mathbb{N}, therefore $A \backslash B \sim \mathbb{N} \nsim \emptyset$, and the claim is false.
4.2. Part B. The claim is true.

Proof. We know that $A \sim C, B \sim D$. Therefore there exist functions $f: A \rightarrow C, g$: $B \rightarrow D$ that are both 1-1 and onto C, D respectively. Consider the function h : $B^{A} \rightarrow D^{C}$. For every function $x \in B^{A}, h(x)=h_{x}$ such that $h_{x}(c)=g\left(x\left(f^{-1}(c)\right)\right)$. It will now suffice to show that h is $1-1$, because a function $j: D^{C} \rightarrow B^{A}$ can be build, and WLOG it will also be 1-1, and by the Cantor-Bernstein theorem we will have cardinality equivelance.

Assume that $h(x)=h(y)$, therefore $h_{x}=h_{y}$, which means that for all $c \in C$, $h_{x}(c)=h_{y}(c)$. Therefore $g\left(x\left(f^{-1}(c)\right)\right)=g\left(y\left(f^{-1}(c)\right)\right)$. We know that g is 1-1, therefore $x\left(f^{-1}(c)\right)=y\left(f^{-1}(c)\right)$. Since f is 1-1 and onto C, then f^{-1} is onto A, therefore the equality holds for every $a \in A$, so for every $a, x(a)=y(a)$, therefore $x=y$. We have therefore shown one 1-1 function in one direction, and by symmetry we have one in the other, and thus $B^{A} \sim D^{C}$.

4.3. Part C. The claim is true.

Proof. Let us define $f:\left(A^{B}\right)^{C} \rightarrow A^{(B \times C)}$, such that for all $x \in\left(A^{B}\right)^{C}, f(x)=$ $f_{x}: B \times C \rightarrow A$, such that $f_{x}(b, c)=(x(c))(b)$.
f is 1-1: Assume $f(x)=f(y)$, therefore $f_{x}=f_{y}$. Thus for all pairs $b, c \in B \times C$, $(x(c))(b)=(y(c))(b)$. Since this holds for every $b \in B$ (because for each such b there is a pair $(b, c) \in B \times C)$, then $x(c)=y(c)$. Since this holds for every $c \in C$ (same reason), then $x=y$.

Let us define $g: A^{(B \times C)} \rightarrow\left(A^{B}\right)^{C}$, such that for all $x \in A^{(B \times C)}, g(x)=g_{x}$: $C \rightarrow A^{B}, g_{x}(c)=g_{x, c}: B \rightarrow A$, and $g_{x, c}(a)=(x(b, c))(a)$. We will show that g is 1-1.

Assume $g(x)=g(y)$, therefore $g_{x}=g_{y}$. Thus for all $c \in C, g_{x}(c)=g_{y}(c)$, so $g_{x, c}=g_{y, c}$. Therefore for all $a \in A, g_{x, c}(a)=g_{y, c}(a)$. So we have that for all $a, b, c \in A, B, C,(x(b, c))(a)=(y(b, c))(a)$, and this is only possible if for all $(b, c) \in B \times C, x(b, c)=y(b, c)$, so $x=y$.

We've shown a 1-1 function in each direction, so by the Cantor-Bernstein theorem, the sets are of equal cardinality.
4.4. Part D. The claim is false. Assume $B=C=0, A=0,1$. Then A^{B} has exactly two functions - constant 0 and constant 1 , that is, $A^{B}=\left\{f_{0}, f_{1}\right\}$. Since $B=C$, also $A^{C}=\left\{f_{0}, f_{1}\right\}$, and thus $A^{B} \times A^{C}=\left\{\left(f_{0}, f_{0}\right),\left(f_{0}, f_{1}\right),\left(f_{1}, f_{1}\right),\left(f_{1}, f_{0}\right)\right\}$, and $\left|A^{B} \times A^{C}\right|=4$. However, $B=C$, therefore $B \cup C=B$, and thus $A^{B \cup C}=A^{B}$, so as we've shown, $\left|A^{B \cup C}\right|=\left|A^{B}\right|=2 \neq 4$.

5. Question 5

5.1. A. A is uncountable.

Proof. Assume by contrast that A is countable. Therefore there exists $f: \mathbb{N} \rightarrow A$ which is $1-1$ and onto A. Also, let B_{\circlearrowleft} the set of infinte binary vectors with an infinite number of 1 s and an infinite number of 0 s . We will show a $1-1$ function from B_{\circlearrowleft} onto A :
$k: A \rightarrow B_{\varrho}$ will be defined as $k(X)=b$ such that $b_{i}=1 \Longleftrightarrow i \in X$. Because X is infinite, and for each $i \in X, b_{i}=1$, then b has an infinite number of 1 s . Because $\mathbb{N} \backslash X$ is infinite, and for each $i \in \mathbb{N} \backslash X, i \notin X$ then $b_{i}=0$, then b has an infinite number of 0 s . Therefore $b \in B_{\varrho}$. Clearly this function is 1-1, because if WLOG $a \in X_{1}, a \notin X_{2}$, then $f\left(X_{1}\right)_{a}=1 \neq 0=f\left(X_{2}\right)_{a}$. It is also onto B because any vector $B \in B \circlearrowleft$ can be represented by an appropriate set X for which every i that $b_{i}=1$ maintains $i \in X$. Again, by the same argument, since b has infinite 1 s and 0s, both X and $\mathbb{N} \backslash X$ will be infinite.

Now, we've assumed that f is 1-1 and onto A, and proven that k is 1-1 and onto B_{\bigcirc}. Therefore $h=f \circ k$ is $1-1$ and onto B_{\bigcirc}. Examine the values of h : (We don't know what they are, because f is unknown. We do know they're binary vectors though)

$$
\begin{aligned}
h(0) & =\mathbf{b}_{\mathbf{0 0}} b_{01} b_{02} b_{03} b_{04} b_{05} b_{06} b_{07} \cdots \\
h(1) & =b_{10} b_{11} b_{12} \mathbf{b}_{\mathbf{1 3}} b_{14} b_{15} b_{16} b_{17} \cdots \\
h(2) & =b_{20} b_{21} b_{22} b_{23} b_{24} b_{25} \mathbf{b}_{\mathbf{2 6}} b_{27} \cdots \\
& \vdots
\end{aligned}
$$

Consider the following vector h^{*} :

$$
h^{*}=\overline{b_{00}} 01 \overline{1_{13}} 01 \overline{b_{26}} 01 \ldots
$$

As we've shown, h is onto $B_{\varrho} . h^{*} \in B_{\varrho}$, seeing as it clearly has an infinite number of 0 s and 1 s . Therefore there exists i such that $h^{*}=h(i)$. However, $h(i)_{3 i}=b_{i, 3 i}$, whereas $h_{3 i}^{*}=\overline{b_{i, 3 i}}$, therefore for any $i \in \mathbb{N}, h^{*} \neq h(i)$. This is in contradiction to h being onto B_{\odot}, which is only possible if our original assumption that f is onto A was false. Therefore A cannot be countable.

5.2. $B . B$ is countable.

Proof. We will use the same function k we've defined before, only this time it will have the domain B, and the range $B_{\boldsymbol{\omega}}$, which will be the binary vectors with a finite number of 0 s . Because of the same arguments as before, k will be 1-1 and onto $B_{\boldsymbol{N}}-0 \mathrm{~s}$ are for $i \in \mathbb{N} \backslash X$, and there are a finite number of those.

Therefore, $B \sim B_{\boldsymbol{c}}$. All that remains is to show that $B_{\boldsymbol{c}}$ is countable. We can do this by counting the negatives in ordinary binary order, "starting from the end", that is $-11111 \ldots, 01111 \ldots, 10111 \ldots, 00111 \ldots, 11011 \ldots, 01011 \ldots, \ldots$. Each vector with a finite number of 0 s has a maximal index

$$
i_{M}=\operatorname{argmax}_{i \in \mathbb{N}}\left(b_{i}=0\right)
$$

Therefore the vector $\underbrace{1111 \ldots 1}_{\times i_{M}+1} 0111 \ldots$ will be counted after it, and will be counted at step $2^{i_{M}+1}$, then all vectors with a finite number of 0 s are reached in a finite number of steps.

LOGIC AND SET THEORY HW 6

OHAD LUTZKY, MAAYAN KESHET

1. Question 1

Claim 1. Let $X_{B, F} \subseteq Z$ be an inductively defined group, and $x \in Z$. Then $x \in X_{B, F}$ iff x has a creation sequence in $X_{B, F}$.

Because WFF was defined inductively as a subset of $(S y m b \cup V a r)^{*}$, then the claim immediately answers question 1.

Proof of Claim ??. First direction: By structure induction. Let

$$
Y=\left\{z \in Z \mid z \text { has a creation sequence in } X_{B, F}\right\}
$$

Then we will show that $X_{B, F} \subseteq Y$.
Basis: All $y \in B$ have a trivial finite creation sequence:

$$
y \quad \text { (Base) }
$$

Closure: We will show that Y is closed under F. Assume $f_{i} \in F$ is an m valued function, $y_{1}, \ldots, y_{m} \in Y$, then y_{1}, \ldots, y_{m} each have some creation sequence $s\left(y_{j}\right)$. As we've shown in a previous homework exercise, concatenation of creation sequences yields a valid creation sequence. Therefore, we will take the concatenation $s\left(y_{1}\right)\left|s\left(y_{2}\right)\right| \ldots\left|s\left(y_{m}\right)\right| f_{i}\left(y_{1}, \ldots, y_{m}\right)$. This is a valid creation sequence - from the first entry in $s\left(y_{1}\right)$ to the last entry of $s\left(y_{m}\right)$ we have already shown validity, and the new entry $f(\ldots)$ is valid because it is a function of y_{1}, \ldots, y_{m}, all of which are previous entries in the creation sequence.

This creation sequence is finite because $s\left(y_{j}\right)$ are all, by the inductive assumption, finite, and we've only added 1 entry.
Second direction: By induction on the length of the creation series.
For the case where the length of the creation series is 1 , we have already shown in a previous exercise that the creation series must be a single element of B, and is thus trivially a member of $X_{B, F}$.

Now, assume the claim is true for all creation series of length $\leq k$, and we will show for length $k+1$. Let $s_{1}, s_{2}, \ldots, s_{k}, s_{k+1}$ be a creation series. Then each prefix s_{1}, \ldots, s_{j} such that $j \leq k$ is a creation series (we've shown prefixes of creation sequences to be themselves valid creation sequences) of length $j \leq k$, therefore by the inductive assumption, $s_{1}, \ldots, s_{k} \in X_{B, F}$. Now, seeing as $s_{1}, \ldots, s_{k}, s_{k+1}$ is also a valid creation sequence, then there are two options: If $s_{k+1} \in B$, then trivially $s_{k+1} \in X_{B, F}$. Therefore we only need to show for the case that $s_{k+1}=$ $f_{i}\left(s_{j_{1}}, s_{j_{2}}, \ldots, s_{j_{m}}\right)$ where $f_{i} \in F$ is an m-valued function. But this is also trivial, seeing as by definition, $X_{B, F}$ is closed under F.
2. Question 2

2.1. Part A.

Proof. Let validpar be the property described - i.e., validpar (φ) means that between any pair of parentheses of the form $) w(\operatorname{in} \varphi, w$ contains at least one connector. Formally, if we enumerate all parentheses in φ like so $-\varphi=\left(0(1)_{2}\right)_{3}(4)_{5}$, and let $\#_{()}(\varphi)$ be their count (6 in this case), then for all $i<\#_{()}$such that $)_{i}$ is in φ (that is, the i th bracket is a closing bracket), then between it and ($i+1$ there is a connector.

Let $Y=\left\{\varphi \in(S y m b \cup V a r)^{*} \mid \operatorname{validpar}(\varphi)\right\}$. We will show by structure induction on WFF that WFF $\subseteq Y$.

Basis: For each $i \in \mathbb{N}, p_{i}$ has no parentheses, then the claim is trivially held for those. Identically, it holds for \mathbf{T} and \mathbf{F}.
Closure: Assume $\varphi_{1}, \varphi_{2} \in Y$, and we will show that $f_{\neg}\left(\varphi_{1}\right), f_{\circ}\left(\varphi_{1}, \varphi_{2}\right) \in$ Y. The claim is trivial for $f_{\neg}\left(\varphi_{1}\right)=\neg \varphi_{1}$ - we haven't added any new parentheses, and the claim already holds (by assumption) for φ_{1}.

As for $f_{\circ}\left(\varphi_{1}, \varphi_{2}\right)=\left(\varphi_{1} \circ \varphi_{2}\right)$, we must check for every closing bracket, that between it and the nearest following open bracket there is a connector.

Let $)_{i}$ be a closing bracket in φ_{1} (if any exist). By the assumption, either there is a connector between $)_{i}$ and $\left(_{i+1}\right.$, or there is no $\left(_{i+1}\right.$ in φ_{1}. In this case, the first following opening bracket, if any, will be in φ_{2} - and this will follow the connector \circ.

For every closing bracket in φ_{2}, again, since φ_{2} maintains the inductive assumption, then each closing bracket in φ_{2} is either followed by no opening bracket at all (not in φ_{2}, and we haven't added any), or is followed by a connector first.

2.2. Part B.

Proof. Let onemorevar be the property described - i.e., onemorevar (φ) means that $\#_{\text {var }}(\varphi)=\#_{\text {con } 2}(\varphi)$. Let $Y=\left\{\varphi \in(S y m b \cup \operatorname{Var})^{*} \mid\right.$ onemorevar $\left.(\varphi)\right\}$, and we will show that WFF $\subseteq Y$ by structure induction.

Basis: For all atomic formulae $\varphi \in \mathbf{W F F}, \#_{\operatorname{var}}(\varphi)=1$ whereas $\#_{\operatorname{con} 2}(\varphi)=$ 0 , so the claim holds.
Closure: We need to show that Y is closed under the following functions:

- Assuming $\varphi \in Y$, we can see that $\neg \varphi$ maintains $\#_{v a r}(\varphi)=\#_{v a r}(\neg \varphi)$, $\#_{c o n 2}(\varphi)=\#_{\operatorname{con} 2}(\neg \varphi)$, as we've only added one connector which is unary, therefore $\neg \varphi \in Y$ as well.
- Assuming $\varphi_{1}, \varphi_{2} \in Y$, we have by definition of Y that $\# v a r\left(\varphi_{1}\right)=$ $\# \operatorname{con2}\left(\varphi_{1}\right)+1$, and $\#_{\text {var }}\left(\varphi_{2}\right)=\#_{\text {con2 }}\left(\varphi_{2}\right)+1$. Examine $\varphi_{1} \circ \varphi_{2}$. It has all of the variables of φ_{1} and φ_{2}, with no added variables, therefore $\# v a r\left(\varphi_{1} \circ \varphi_{2}\right)=\#_{v a r}\left(\varphi_{1}\right)+\#_{v a r}\left(\varphi_{2}\right)$. But by the assumption, this is equal to $\#_{\operatorname{con} 2}\left(\varphi_{1}\right)+1+\#_{\operatorname{con} 2}\left(\varphi_{2}\right)+1$. The number of binary connectors in $\varphi_{1} \circ \varphi_{2}$ is, plainly, $\#$ var $\left(\varphi_{1}\right)+\# v a r\left(\varphi_{2}\right)+1$ (the o causing the +1), so we have that $\#_{v a r}\left(\varphi_{1} \circ \varphi_{2}\right)=\# \operatorname{con2}\left(\varphi_{1} \circ \varphi_{2}\right)+1$.

3. Question 3

3.1. Part A. The claim is false. Take the example $\varphi=\rightarrow p_{0} \rightarrow \rightarrow p_{0} p_{0} p_{0}$ - we must show that $\varphi \in P O L$, and that the longest chain of binary connectors in φ is not a prefix of φ. The latter is trivial - the longest chain of connectors in φ is $\rightarrow \rightarrow$, which is clearly not a prefix of φ. All that remains is to show a creation sequence for φ over $P O L$, and by claim ?? we will have $v p \in P O L$, thus φ will be a less counter example to the claim.

The following creation sequence will be appropriate:

1.	p_{0}	(base)
2.	p_{0}	(base)
3.	$\rightarrow p_{0} p_{0}$	$(\rightarrow 1,2)$
4.	$\rightarrow \rightarrow p_{0} p_{0}$	$(\rightarrow 3,1)$
5.	$\rightarrow p_{0} \rightarrow \rightarrow p_{0} p_{0} p_{0}$	$(\rightarrow 1,4)$

3.2. Part B.

Claim 2. If $\varphi \in P O L$, then $\#_{v a r}(\varphi)=\#_{\operatorname{con} 2}(\varphi)+1$.
Claim 3. If $\psi \in P O L$, and φ is a $\operatorname{proper}^{1}$ prefix of ψ, then $\#_{v a r}(\varphi) \neq \# \operatorname{con2}(\varphi)+1$.
Proof. Proof of Claim ?? Let $Y=\left\{\psi \in(S y m b \cup \operatorname{Var})^{*} \mid \#_{\text {var }}(\psi)=\#_{c o n 2}(\psi)+1\right\}$. We will show by strctural induction that $P O L \subseteq Y$, and therefore for any $\psi \in P O L$, $\#_{v a r}(\psi)=\#_{\text {con } 2}(\psi)+1$.

Basis: For any atom $p_{i} \in \operatorname{Var}, \#_{\text {var }}\left(p_{i}\right)=1$, and $\#_{\text {con2 }}\left(p_{i}\right)=0$, therefore the property is maintained. The same holds for \mathbf{T}, \mathbf{F}.
Closure: We have to prove for both the unary and binary operations:

- Assume $\varphi \in Y$, and examine $\neg \varphi$. Clearly we have added nothing but a unary connector, and removed nothing, thus

$$
\#_{v a r}(\neg \varphi)=\#_{v a r}(\varphi), \#_{\operatorname{con} 2}(\neg \varphi)=\#_{v a r}(\varphi)
$$

By the inductive assumption $\#_{v a r}(\neg \varphi)=\#_{\operatorname{con} 2}(\neg \varphi)+1$, therefore $\neg \varphi \in Y$.

- Assume $\varphi, \psi \in Y$, and examine $\alpha=\circ \varphi \psi$. We have clearly retained all previous variables and binary connectors, and added one. Thus, $\#_{\operatorname{con} 2}(\alpha)=1+\#_{\operatorname{con} 2}(\varphi)+\#_{\operatorname{con} 2}(\psi)$ and $\#_{v a r}(\alpha)=\#_{v a r}(\varphi)+$ $\#_{v a r}(\psi)$. But by the inductive assumption,
$\#_{v a r}(\varphi)+\#_{v a r}(\psi)=\#_{c o n 2}(\varphi)+\#_{c o n 2}(\psi)+2=\#_{c o n 2}(\alpha)+1$
Therefore $\alpha \in Y$.
We have shown that $P O L \subseteq Y$.
Proof. Proof of Claim ?? Let lackingprefix be the described property - that is, lackingprefix (ψ) means that if φ is a proper prefix of ψ, then $\#_{v a r}(\varphi)<$ $\#_{\text {con2 }}(\varphi)+1$. Let $Y=\{\psi \in P O L \mid$ lackingprefix $(\psi)\}$, then we will show that $Y \subseteq P O L$ by structural induction. Note that we assume $Y \subseteq P O L$, therefore we will have $Y=P O L$.

Basis: All atoms p_{i}, as well as \mathbf{T}, \mathbf{F}, have no proper prefixes, therefore the property holds trivially.
Closure: We have to prove for both the unary and binary operations:

- Assume $\psi \in Y$, and examine $\neg \psi$. Then there are two options for a proper prefix:
- If the proper prefix is simply \neg, then obviously $\#_{v a r}(\neg)=0<$ $1=\#_{\text {con } 2}(\neg)+1$.
- Any other proper prefix φ^{\prime} of $\neg \psi$ can clearly be written as $\neg \varphi, \varphi$ being a proper prefix of ψ. By the assumption, $\psi \in$ Y and therefore $\#_{v a r}(\varphi)<\#_{\operatorname{con} 2}(\varphi)+1$. But, once again, $\#_{v a r}(\varphi)=\#_{\operatorname{var}}(\neg \varphi), \#_{\operatorname{con} 2}(\varphi)=\#_{\text {con2 }}(\neg \varphi)$, and all in all lackingprefix $(\neg \psi)$. Therefore $\neg \psi \in Y$.
- Assume $\psi_{1}, \psi_{2} \in Y$, and examine $\circ \psi_{1} \psi_{2}$. Let φ be a proper prefix of $\circ \psi_{1} \psi_{2}$, then there are the following options:
- If $\varphi=\circ$, then $\#_{v a r}(\circ)=0<\#_{\text {con } 2}(\circ)+1=2$. Then $\varphi \in Y$.

[^3]- If $\varphi=\circ \varphi_{1}, \varphi_{1}$ being a proper prefix of ψ_{1}, then obviously $\#_{v a r}(\varphi)=\#_{v a r}\left(\varphi_{1}\right)$, and $\#_{\text {con } 2}(\varphi)=\#_{\operatorname{con} 2}\left(\varphi_{1}\right)+1$. By the inductive assumption, lackingprefix $\left(\psi_{1}\right)$, therefore $\#$ var $\left(\varphi_{1}\right)<$ $\# \operatorname{con} 2\left(\varphi_{1}\right)+1$. All in all, we have that

$$
\begin{aligned}
& \#_{v a r}(\varphi)=\#_{v a r}\left(\varphi_{1}\right)<\#_{\operatorname{con} 2}\left(\varphi_{1}\right)+1=\#_{c o n 2}(\varphi)<\#_{c o n 2}(\varphi)+1 \\
& \quad-\text { If } \varphi=\circ \psi_{1}, \text { then } \#_{v a r}(\varphi)=\#_{v a r}\left(\psi_{1}\right), \#_{\operatorname{con} 2}(\varphi)=\#_{c o n 2}\left(\psi_{1}\right)+
\end{aligned}
$$ 1. But $\psi_{1} \in Y$, therefore $\psi_{1} \in P O L$, and by Claim ??, $\#$ var $\left(\psi_{1}\right)=$ $\#_{\text {con2 }}\left(\psi_{1}\right)+1$. All in all, we have that

$\#_{v a r}(\varphi)=\#_{v a r}\left(\psi_{1}\right)=\#_{\operatorname{con} 2}\left(\psi_{1}\right)+1=\#_{\operatorname{con} 2}(\varphi)<\#_{\operatorname{con} 2}(\varphi)+1$

- If $\varphi=\circ \psi_{1} \varphi_{2}, \varphi_{2}$ being a proper prefix of ψ_{2}, then $\#_{v a r}(\varphi)=$ $\#$ var $\left(\psi_{1}\right)+\#_{\text {var }}\left(\varphi_{2}\right), \#_{\text {con } 2}(\varphi)=1+\#_{\text {con } 2}\left(\psi_{1}\right)+\#_{\text {con } 2}\left(\varphi_{2}\right)$. Again, $\psi_{1} \in P O L$, therefore $\#_{\text {var }}\left(\psi_{1}\right)=\#_{\text {con } 2}\left(\psi_{1}\right)+1$, and lackingprefix $\left(\psi_{2}\right)$, thus $\#_{\text {var }}\left(\varphi_{2}\right)<\#_{\operatorname{con} 2}\left(\varphi_{2}\right)+1$. All in all,

$$
\begin{aligned}
\#_{v a r}(\varphi) & = \\
& =\#_{v a r}\left(\psi_{1}\right)+\#_{v a r}\left(\varphi_{2}\right) \\
& =\#_{c o n 2}\left(\psi_{1}\right)+1 \#_{v a r}\left(\varphi_{2}\right) \\
& <\#_{\operatorname{con} 2}\left(\psi_{1}\right)+\#_{\operatorname{con} 2}\left(\varphi_{2}\right)+1+1 \\
& =\#_{\operatorname{con} 2}(\varphi)+1
\end{aligned}
$$

We have shown that $Y=P O L$, therefore for every prefix φ of a prefix formula $\psi \in P O L, \#_{v a r}(\varphi)<\#_{c o n 2}(\psi)+1$.

Proof of ??. Assume $\varphi, \psi \in P O L$, and that φ is a prefix of ψ. We need to show that $\varphi=\psi$. Assume by contrast that $\varphi \neq \psi$, then by Claim ??, $\#_{v a r}(\varphi) \neq \#_{\operatorname{con} 2}(\varphi)+1$, and then by reversal of Claim ??, $\varphi \notin P O L$.

3.3. Part C.

Proof. Let X be either $P O L$ or WFF. In either case, X is infinite: $\operatorname{Var} \subseteq X$, and Var is infinite. Furthermore, X is countable: X is, in both cases, an inductive set with a countable basis (Var is defined as an enumeration of the atomic formulae p_{i}, and the addition of \mathbf{T}, \mathbf{F}, by the infinite hotel theorem, keeps it countable), and a finite closure ($|F|=4$ in both cases), and thus by a theorem we've shown in HW $5, X$ is countable.

We've shown both $P O L$ and WFFto be infinite and countable. Thus we have $P O L \sim \mathbb{N}, \mathbf{W F F} \sim \mathbb{N}$, and therefore $P O L \sim \mathbf{W F F}$.

4. Question 4

4.1. Part A.

Proof. We need to show that WFF is closed under the subst function. We will show this by structure induction:

Basis: If $\varphi=p_{i}$, then for any substitution $s, \operatorname{subst}(\varphi, s)=s\left(p_{i}\right)$. By definition, $s\left(p_{i}\right) \in$ WFF.

If $\varphi \in \mathbf{T}, \mathbf{F}$, then for any substitution $s, \operatorname{subst}(\varphi, s)=\varphi$, and by the assumption $\varphi \in \mathbf{W F F}$.
Closure: We need to show that WFF is closed under subst, for both binary and unary functions on formulae in WFF:

- Assume $\varphi \in \mathbf{W F F}$, and that for any $\operatorname{substitution~} s, \operatorname{subst}(\varphi, s) \in$ WFF. Then $\operatorname{subst}(\neg \varphi, s)=\neg \operatorname{subst}(\varphi, s)$, and since $\operatorname{subst}(\varphi, s) \in$ WFF, by definition of WFF, $\neg \operatorname{subst}(\varphi, s) \in \mathbf{W F F}$.
- Assume $\varphi_{1}, \varphi_{2} \in \mathbf{W F F}$, and that for any $s: \operatorname{Var} \rightarrow \mathbf{W F F}$, both $\operatorname{subst}\left(\varphi_{1}, s\right) \in \mathbf{W F F}$ and $\operatorname{subst}\left(\varphi_{2}, s\right) \in \mathbf{W F F}$. Then

$$
\operatorname{subst}\left(\left(\varphi_{1} \circ \varphi_{2}\right), s\right)=\left(\operatorname{subst}\left(\varphi_{1}, s\right) \circ \operatorname{subst}\left(\varphi_{2}, s\right)\right)
$$

By definition of WFF, since by the assumption both $\operatorname{subst}\left(\varphi_{1}, s\right)$ and $\operatorname{subst}\left(\varphi_{2}, s\right) \in \mathbf{W F F}$, then so is $\left(\operatorname{subst}\left(\varphi_{1}, s\right) \circ \operatorname{subst}\left(\varphi_{2}, s\right)\right)$.
4.2. Part B. The claim is false. Take $s=s_{\mathbf{T}}$, that is, $s\left(p_{i}\right)=\mathbf{T}$ for any natural i, and take $t=I$, that is, $s\left(p_{i}\right)=p_{i}$ for any natural i. Then take $\varphi=\mathbf{T}$. By definition of $\operatorname{subst}, \operatorname{subst}(\varphi, s)=\operatorname{subst}(\varphi, t)=\mathbf{T}$, yet clearly $s \neq t$.

4.3. Parts C,D.

Definition. Let $\mathcal{P}_{i=0}^{n}=\left\{p_{0}, p_{1}, p_{2}, \ldots, p_{n}\right\}$. Let $\mathcal{P}_{i=0}^{\infty}=\left\{p_{0}, p_{1}, p_{2}, p_{3}, \ldots\right\}=$ Var.
Claim 4. For any natural n or $n=\infty$, subst $_{2}\left(\mathcal{P}_{i=0}^{n}, s \boldsymbol{T}\right)=\{\boldsymbol{T}\}$.
Proof of Claim ??. Assume $\varphi \in \operatorname{subst}_{2}\left(\mathcal{P}_{i=0}^{n}, s\right)$. Then there exists $\psi \in \mathcal{P}_{i=0}^{n}$ such that $\varphi=\operatorname{subst}\left(\psi, s_{\mathbf{T}}\right)$. But by definition of $\mathcal{P}_{i=0}^{n}$, the only possible values for ψ are p_{i}, and $\operatorname{subst}\left(p_{i}, s_{\mathbf{T}}\right)=s_{\mathbf{T}}\left(p_{i}\right)=\mathbf{T}$ for any p_{i} of these. Then $\varphi=\mathbf{T}$, so $\operatorname{subst}_{2}\left(\mathcal{P}_{i=0}^{n}, s\right) \subseteq\{\mathbf{T}\}$. As we've shown, $\mathbf{T} \in \operatorname{subst}_{2}\left(\mathcal{P}_{i=0}^{n}, s\right)$, therefore $\{\mathbf{T}\} \subseteq$ subst $_{2}\left(\mathcal{P}_{i=0}^{n}, s\right)$.

Both claims C and D are false.
Counterexample for Part C: Take $s=s_{\mathbf{T}}, \Sigma=\mathcal{P}_{i=0}^{42}$. Clearly, Σ is finite, and furthermore $|\Sigma|=42$. However, by Claim ??, $\left|\operatorname{subst}_{2}(\Sigma, s)\right|=1$, thus $\Sigma \nsim$ $\operatorname{subst}_{2}(\Sigma, s)$.

Counterexample for Part D: Take $s={ }_{\mathbf{T}}^{\mathbf{T}}, \Sigma=\mathcal{P}_{i=0}^{\infty}$. As we've shown in class, $\Sigma=\operatorname{Var}$ is infinite. However, by Claim ??, $\left|\operatorname{subst}_{2}(\Sigma, s)\right|=1$, thus $\Sigma \nsim$ subst $_{2}(\Sigma, s)$.

LOGIC \& SET THEORY HW 7

OHAD LUTZKY

2. Question 2

2.1. Part A.

Proof. Basis: For $k=0, \Sigma=\emptyset$, then $\bigvee \Sigma=\mathbf{F}$. Take any assignment z, then it trivially does not satisfy $\bigvee \Sigma$. Also, trivially there does not exist $\varphi \in \Sigma$ which z satisfies.
Closure: Assume the claim holds for $|\Sigma|=k$, we'll show it for $|\Sigma|=k+1$.
First direction: Assume there exists $\varphi \in \Sigma$ such that $z \vDash \varphi$. Seeing as $\Sigma=\left\{\varphi_{0}, \ldots, \varphi_{k-1}, \varphi_{k}\right\}$, either $\varphi=\varphi_{k}$ or $\varphi=\varphi_{i}$ where $i<k$. Assume the former, then by $T T_{\vee}, z$ must satisfy $\bigvee \Sigma=\left(\bigvee\left\{\varphi_{0}, \ldots, \varphi_{k-1}\right\} \vee \varphi_{k}\right)$. If we assume the latter, then by the inductive assumption, since there exists $\varphi_{i} \in\left\{\varphi_{0}, \ldots, \varphi_{k-1}\right.$ which z satisfies, then z satisfies $\bigvee\left\{\varphi_{0}, \ldots, \varphi_{k-1}\right\}$, and thus by $T T_{\vee}$ it satisfies $\bigvee \Sigma$.

Second direction: Assume that z satisfies $\bigvee \Sigma$. Then by $T T_{\vee}$, it either satisfies φ_{k} or it satisfies $\bigvee\left\{\varphi_{0}, \ldots, \varphi_{k-1}\right\}$ (or both). If we assume the former, then we're done - we've found a formula in Σ which z satisfies. Assume then, that z does not satisfy φ_{k}. Then by $T T_{\vee}$, as we've said, it must satisfy $\bigvee\left\{\varphi_{0}, \ldots, \varphi_{k-1}\right\}$. But by the inductive assumption, this means that there exists φ_{i} with $i<k$ such that z satisfies φ_{i}. Obviously, $\varphi_{i} \in \Sigma$, and we're done.

2.2. Part B.

Proof. Basis: For $k=0, \Sigma=\emptyset$, then $\bigwedge \Sigma=\mathbf{T}$. Take any assignment z, then it trivially satisfies $\bigwedge \Sigma$. Also, trivially it satisfies every formula in Σ, so $z \vDash \Sigma$.
Closure: Assume the claim holds for $|\Sigma|=k$, we'll show it for $|\Sigma|=k+1$.
First direction: Assume that $z \vDash \Sigma$. Then for every $\varphi \in \Sigma, z$ satisfies φ. Privately, z also satisfies $\left\{\varphi_{0}, \ldots, \varphi_{k-1}\right\}$, and thus by the inductive assumption it satisfies $\bigwedge\left\{\varphi_{0}, \ldots, \varphi_{k-1}\right\}$. Also, it privately satisfies φ_{k}. Thus, by $T T_{\wedge}$, it satisfies $\Lambda \Sigma$.

Second direction: Assume that z satisfies $\bigwedge \Sigma$. Then by $T T_{\wedge}$, it both satisfies φ_{k} and $\bigwedge\left\{\varphi_{0}, \ldots, \varphi_{k-1}\right\}$. By the inductive assumption, this means that it also satisfies $\left\{\varphi_{0}, \ldots, \varphi_{k-1}\right\}$, and altogether we've shown that it satisfies every formula in Σ, that is, $z \vDash \Sigma$.

2.3. Part C.

Proof. Assume z satisfies $\bigwedge_{i=0}^{k-1}\left(\neg \varphi_{i}\right)$. Then by Part B, it satisfies $\neg \varphi_{i}$ for all $i<k$. By $T T_{\neg}$, that means that it does not satisfy φ_{i} for all $i<k$, and then by Part A, that means that it does not satisfy $\bigvee_{i=0}^{k-1} \varphi_{i}$. But, again by $T T_{\neg}$, we have that z satisfies $\neg \bigvee_{i=0}^{k-1} \varphi_{i}$.

Reversal of the proverbial arrows will give us the other direction, and thus we have shown logical equivelance of the two formulae.

2.4. Part D.

Proof. Assume z satisfies $\neg \bigwedge_{i=0}^{k-1}\left(\neg \varphi_{i}\right)$. Then by $T T_{\neg}$, it does not satisfy $\bigwedge_{i=0}^{k-1}\left(\neg \varphi_{i}\right)$. By Part B, this means that there exists φ_{i} with $i<k$ such that z does not satisfy φ_{i}. Therefore, by $T T_{\neg}$, there exists φ_{i} such that z does satisfy $\neg \varphi_{i}$, and then by Part A, this means that z satisfies $\bigvee_{i=0}^{k-1}\left(\neg \varphi_{i}\right)$.

Reversal of the proverbial arrows will give us the other direction, and thus we have shown logical equivelance of the two formulae.

3. Question 3

3.1. Part A. The claim is false. \emptyset is trivially, antisymmetric with respect to any assignment, but is also emptily satisfiable by any assignment.
3.2. Part B. The claim is false. Take $\Sigma_{1}=\emptyset, \Sigma_{2}=\left\{\varphi_{0}\right\}$. As in part A, $L\left(\Sigma_{1}\right)=$ $A S S$, but for any assignment z, there does not exist $\alpha \in \Sigma_{2}$ such that $\bar{z}(\alpha) \neq \bar{z}\left(\varphi_{0}\right)$, since only $\varphi_{0} \in \Sigma_{2}$, thus $L\left(\Sigma_{2}\right)=\emptyset$. In summary, $L\left(\Sigma_{1}\right)=A S S, L\left(\Sigma_{2}\right)=\emptyset, \Sigma_{1} \cup$ $\Sigma_{2}=\Sigma_{2}, L\left(\Sigma_{2}\right)=L\left(\Sigma_{2}\right)=\emptyset \neq L\left(\Sigma_{1}\right) \cup L\left(\Sigma_{2}\right)=A S S$.

4. Question 4

4.1. Part A.

Lemma 1 (The Chocolate Chip Cookie lemma). If $A, B \in \wp(\mathbf{W F F}), \alpha \in \mathbf{W F F}$, and $A \cap B \vDash \alpha$, then $A \vDash \alpha$ and $B \vDash \alpha$.

Proof of Lemma ??. It suffices to show that $A \vDash \alpha$, and then symmetrically, $B \vDash \alpha$. We must therefore show that for each $z \in A S S, z \vDash A \Rightarrow z \vDash \alpha^{1}$. But $z \vDash A$ means that for any $\varphi \in A, z \vDash \varphi$. Privately, this holds for $\varphi \in A \cap B \subseteq A$, therefore $z \vDash A \cap B$. But by the assumption, this means that $z \vDash \alpha$. Thus $A \vDash \alpha$.

Proof of $4 A$. Assume T, T^{\prime} are theories. If $T \cap T^{\prime} \vDash \alpha$, then by the Chocolate Chip Cookie Lemma (??), both $T \vDash \alpha$ and $T^{\prime} \vDash \alpha$. But T, T^{\prime} are theories, thus $\alpha \in T, \alpha \in T^{\prime}$, or in other words (symbols), $\alpha \in T \cap T^{\prime}$. We have shown that if $T \cap T^{\prime} \vDash \alpha$, then $\alpha \in T \cap T^{\prime}$, so $T \cap T^{\prime}$ is a theory.

4.2. Part B.

Proof. Assume by contrast that neither $T \subseteq T^{\prime}$ nor $T^{\prime} \subseteq T$. Therefore exist $\alpha \in T \backslash T^{\prime}, \beta \in T^{\prime} \backslash T$, and thus $\alpha, \beta \in T \cup T^{\prime}$. Then any assignment which satisfies $T \cup T^{\prime}$ would have to satisfy α, β, and so by $T T_{\wedge}$, it satisfies $\alpha \wedge \beta$, or in other words $-T \cup T^{\prime} \vDash \alpha \wedge \beta$. But $T \cup T^{\prime}$ is a theory, so $\alpha \wedge \beta \in T \cup T^{\prime}$, meaning $\alpha \wedge \beta \in T$ or $\alpha \wedge \beta \in T^{\prime}$. Assume the former, then any assignment which satisfies T must satisfy $\alpha \wedge \beta$, and by $T T_{\wedge}$, to do this it must satisfy β, meaning $T \vDash \beta$. Thus $\beta \in T$, in contrast to the assumption. If we assume the latter, that is, $\alpha \wedge \beta \in T^{\prime}$, then we identically reach the conclusion that $\alpha \in T^{\prime}$, again in contrast to the assumption. Thus either $T \subseteq T^{\prime}, o r T^{\prime} \subseteq T$.

[^4]
5. Question 5

5.1. Part A. The claim is true.

Proof. Let z be the said assignment. φ_{z} depends on k, so we will call it $\varphi_{z, k}$ and define it inductively.

Basis: $\varphi_{z, 0}=\mathbf{T}$
Closure: $\varphi_{z, i+1}= \begin{cases}\left(p_{i} \wedge \varphi_{z, i}\right), & z\left(p_{i}\right)=1 \\ \left(\neg p_{i} \wedge \varphi_{z, i}\right), & z\left(p_{i}\right)=0\end{cases}$
We will now prove that such φ_{z} maintains the claim.
First direction: Clearly $\varphi_{z, k}$ only holds the variables p_{0}, \ldots, p_{k-1}, thus when evaluating the meaning - seeing as z, z^{\prime} are equal with respect to their assignments on p_{0}, \ldots, p_{k-1}, we will reach the same meaning. All that is left to show is that z satisfies $\phi_{z, k}$, because then so does z^{\prime}.

Basis: For $k=0$, any z trivially satisfies $\varphi_{z, 0}$.
Closure: Assume that z satisfies $\varphi_{z, k}$, and we'll show again, inductively.

Basis: For $k=0$, trivially, any two assignments z, z^{\prime} are equal with respect to their assignments on p_{0}, \ldots, p_{k-1}, thus any z^{\prime} must satisfy the formula. But the formula is \mathbf{T}, so it does.
Closure: Assume that z satisfies $\varphi_{z, k}$, and we'll show that it satisfies $\varphi_{z, k+1}$. If $z\left(p_{k}\right)=1$, then

$$
\begin{aligned}
M\left(\varphi_{z, k+1}, z\right) & \left.=M\left(\left(p_{k} \wedge \varphi_{z, k}\right)\right), z\right) \\
& =T T_{\wedge}\left(M\left(p_{k}, z\right), M\left(\varphi_{z, k}, z\right)\right)
\end{aligned}
$$

But by the inductive assumption, $M\left(\varphi_{z, k}, z\right)=1$, so

$$
=1
$$

Thus z satisfies $\varphi_{z, k+1}$. If $z\left(p_{k}\right)=0$, then

$$
\begin{aligned}
M\left(\varphi_{z, k+1}, z\right) & \left.=M\left(\left(\neg p_{k} \wedge \varphi_{z, k}\right)\right), z\right) \\
& =T T_{\wedge}\left(M\left(\neg p_{k}, z\right), M\left(\varphi_{z, k}, z\right)\right) \\
& =T T_{\wedge}\left(T T_{\neg}\left(p_{k}, z\right), M\left(\varphi_{z, k}, z\right)\right) \\
& =T T_{\wedge}\left(1, M\left(\varphi_{z, k}, z\right)\right)
\end{aligned}
$$

But by the inductive assumption, $M\left(\varphi_{z, k}, z\right)=1$, so

$$
=1
$$

Second direction: We have to show that if z^{\prime} satisfies $\varphi_{z, k}$, then it identifies with z on variables p_{0}, \ldots, p_{k-1}.

Basis: For $k=0$, trivially, any assignment satisfies $\varphi z, 0=\mathbf{T}$. But also trivially, any two assignments z, z^{\prime} are equal with respect to their assignments on p_{0}, \ldots, p_{k-1}.
Closure: Assume that z^{\prime} satisfies $\varphi_{z, k+1}$, and that it identifies with z on p_{i} for $i<k$, and we'll show that it identifies with z on p_{k}. Assume that $z\left(p_{k}\right)=1$, we'll show that $z^{\prime}\left(p_{k}\right)=1$.

$$
\begin{aligned}
1=M\left(\varphi_{z, k+1}, z^{\prime}\right) & \left.=M\left(\left(p_{k} \wedge \varphi_{z, k}\right)\right), z^{\prime}\right) \\
& =T T_{\wedge}\left(M\left(p_{k}, z^{\prime}\right), M\left(\varphi_{z, k}, z^{\prime}\right)\right)
\end{aligned}
$$

Therefore, by $T T_{\wedge}, M\left(p_{k}, z^{\prime}\right)=1$. Now assume that $z\left(p_{k}\right)=0$, and we'll show that $z^{\prime}\left(p_{k}\right)=0$.

$$
\begin{aligned}
1=M\left(\varphi_{z, k+1}, z^{\prime}\right) & \left.=M\left(\left(\neg p_{k} \wedge \varphi_{z, k}\right)\right), z^{\prime}\right) \\
& =T T_{\wedge}\left(M\left(\neg p_{k}, z^{\prime}\right), M\left(\varphi_{z, k}, z^{\prime}\right)\right) \\
& =T T_{\wedge}\left(T T_{\neg}\left(M\left(p_{k}, z^{\prime}\right)\right), M\left(\varphi_{z, k}, z^{\prime}\right)\right)
\end{aligned}
$$

Therefore, by $T T_{\wedge}$, we have that $T T_{\neg}\left(M\left(p_{k}, z^{\prime}\right)\right)=1$, so by $T T_{\neg}$ we have that $z^{\prime}\left(p_{k}\right)=0$.
We have shown, for every $z \in A S S, k \in \mathbb{N}$, a formula $\varphi_{z, k} \in \mathbf{W F F}(k)$ for which z^{\prime} satisfies $\varphi_{z, k}$ iff z, z^{\prime} are identical with respect to their assignments on p_{0}, \ldots, p_{k-1}.

5.2. Part B.

Proof. As we've shown previously, WFF $\sim \mathbb{N}$. By definition, WFF $(k) \subseteq \mathbf{W F F}$, and as we've shown in class, this means $\mathbf{W F F}(k) \preceq \mathbf{W F F}$. We will show that $\mathbb{N} \preceq \mathbf{W F F}(k)$, and thus by the Cantor-Bernstein theorem, WFF $(k) \sim$ WFF. We need to show a 1-1 function from \mathbb{N} to $\mathbf{W F F}(k)$. This is simple enough: Take

This function is clearly 1-1. Also, the expression given is within WFF (k) since it doesn't use any variables.

5.3. Part C.

5.3.1. Part i.

Definition 1. Let $A S S(k)=\left\{z \in A S S \mid z\left(p_{i}\right)=0\right.$ for all $\left.i \geq k\right\}$
Definition 2. For any $Z \in \wp(A S S(k))$, define $\Phi_{Z}=\left\{\varphi_{z} \in \mathbf{W F F}(k) \mid z \in Z\right\}$.
Definition 3. $\Sigma_{M}=\left\{\bigvee \Phi_{Z} \in \mathbf{W F F}(k) \mid Z \in \wp(A S S(k))\right\}$

5.3.2. Part ii.

Proof. Let $Z_{1}, Z_{2} \in \wp(A S S(k)), Z_{1} \neq Z_{2}$. Then we will show that $\bigvee \Phi_{Z_{1}} \nsim \bigvee \Phi_{Z_{2}}$. WLOG, there exists $z \in Z_{1} \backslash Z_{2}$. Thus $\varphi_{z} \in \Phi_{Z_{1}}$, and as we've shown, $z \vDash \varphi_{z}$, and as shown in Question 2, this means that $z \vDash \bigvee \Phi_{Z_{1}}$. However, we have shown that if $z \neq z^{\prime}$ with respect to the first k variables, then $z \not \vDash \varphi_{z^{\prime}}$. By construction, every $\varphi \in \Phi_{Z_{2}}$ is of such form $\varphi_{z^{\prime}}$, that is, with $z^{\prime} \neq z$, thus there is no formula in $\Phi_{Z_{2}}$ which z satisfies, and again, as shown in Question 2, this means that $z \not \neq \Phi_{Z_{2}}$. We have shown an assignment that satisfies $\bigvee \Phi_{Z_{1}}$ and not $\bigvee \Phi_{Z_{2}}$, thus the two formulae are not logically equivelant.
5.3.3. Part iii. As we have exactly one formula for each set of assignments in $\wp(A S S(k))$, and they are all distinct (we have shown that they are not logically equivelant, thus they are also privately not equal as strings), then $\left|\Sigma_{M}\right|=$ $\left|\wp(A S S(k))=2^{\mid A S S(k)}\right|$. By combinatorical considerations, $|A S S(k)|$ is the number of binary vectors of length k, that is, 2^{k}. Thus $\left|\Sigma_{M}\right|=2^{2^{k}}$.

5.3.4. part iv.

Proof. Let Σ be a set of pairwise inequivelant formulae. We will show a 1-1 function from it to Σ_{M}, thus $|\Sigma| \leq\left|\Sigma_{M}\right|$.

Let $\operatorname{Ass}_{k}(\varphi)=\{z \in A S S(k) \mid z \Vdash \varphi\}$. Then consider the following function:

$$
f: \Sigma \rightarrow \Sigma_{M}, f(\varphi)=\bigvee \Phi_{A s s_{k}(\varphi)}
$$

To show that it is $1-1$, take $\varphi_{1} \neq \varphi_{2} \in \Sigma$. By the assumption, Σ formulae are pairwise inequivelant, thus $\operatorname{Ass}_{k}\left(\varphi_{1}\right) \neq \operatorname{Ass}_{k}\left(\varphi_{2}\right)$, thus, as we have shown,

6. Question 6

6.1. Part A. The claim is false. Take $\Sigma_{1}=\left\{p_{0}\right\}, \Sigma_{2}=\left\{p_{1}\right\}$. Clearly, $\Sigma \vDash p_{0} \wedge p_{1}$, because any assignment which satisfies Σ would have to satisfy p_{0}, p_{1}, and by $T T_{\wedge}$, this means it satisfies $p_{0} \wedge p_{1}$. However, the assignemnt $\chi_{\Sigma_{1}}{ }^{2}$ satisfies Σ_{1}, but does not satisfy $p_{0} \wedge p_{1}$ as it gives $p_{1} 0$, and similarily, $\chi_{\Sigma_{2}}$ satisfies Σ_{2} but not $p_{0} \wedge p_{1}$. Thus $\Sigma_{1} \cup \Sigma_{2}$ is not partitioned into Σ_{1}, Σ_{2}.
6.2. Part B. The claim is false. Take $\Sigma=\left\{p_{i} \mid i \in \mathbb{N}\right\}$. Assume by contrast that Σ is partitioned into Σ_{1}, Σ_{2}. By definition, they are nonempty. WLOG, assume $p_{1} \in \Sigma_{1}, p_{2} \in \Sigma_{2}$. Again by definition, they are disjoint, thus $p_{1} \notin \Sigma_{2}, p_{2} \notin \Sigma_{1}$. $\Sigma \vDash p_{1} \wedge p_{2}$, because as we have shown in class, only $z_{\mathbf{T}}$ satisfies Σ, thus p_{1}, p_{2} are assigned 1. However, $\Sigma_{1} \not \not \not p_{1} \wedge p_{2}$, because $\chi_{\Sigma_{1}}$ assigns 0 to p_{2}, and thus, while satisfying Σ_{1}, does not satisfy $p_{1} \wedge p_{2}$, and similarily, $\chi_{\Sigma_{2}}$ satisfies Σ_{2} but not $p_{1} \wedge p_{2}$. Thus Σ is not partitioned into Σ_{1}, Σ_{2}. Our only contrast-assumption was that such Σ_{1}, Σ_{2} exist that Σ is partitioned into them, therefore they do not.

6.3. Part C.

Lemma 2 (The theoretic theory theory). For any $\Sigma \in \wp(\mathbf{W F F})$, Con (Σ) is a theory.

Proof of Lemma ??. Assume $\operatorname{Con}(\Sigma) \vDash \alpha$. We want to show that $\Sigma \vDash \alpha$, and then $\alpha \in \operatorname{Con}(\Sigma)$, thus $\operatorname{Con}(\Sigma)$ is a theory. But if z satisfies Σ, then by definition of $\operatorname{Con}(\Sigma)$ (as the set of formulae which are satisfied by all assignments which satisfy $\Sigma), z$ satisfies $\operatorname{Con}(\Sigma)$. As per the assumption, now we have that z satisfies α, and we have shown that $\Sigma \vDash \alpha$.

Proof of $6 C$. Assume Σ is partitioned into Σ_{1}, Σ_{2}. Then by definition of a partition, $\operatorname{Con}(\Sigma)=\operatorname{Con}\left(\Sigma_{1}\right) \cup \operatorname{Con}\left(\Sigma_{2}\right)$. Thus by Lemma ??, $\operatorname{Con}(\Sigma), \operatorname{Con}\left(\Sigma_{1}\right), \operatorname{Con}\left(\Sigma_{2}\right)$ are theories, and from the equality, so is $\operatorname{Con}\left(\Sigma_{1}\right) \cup \operatorname{Con}\left(\Sigma_{2}\right)$. But by ??, this means that either $\operatorname{Con}\left(\Sigma_{1}\right) \subseteq \operatorname{Con}\left(\Sigma_{2}\right)$ or vice versa. Assume the former, then if $\Sigma_{1} \vDash \alpha$, then $\Sigma_{2}=\Sigma \backslash \Sigma_{1} \vDash \alpha$, and Σ_{1} is redundant. Identically, assuming the latter gives that Σ_{2} is redundant.

[^5]
LOGIC \& SET THEORY - HW 8

OHAD LUTZKY

Please return to cell 7

1. Question 1

1.1. Part A.

Proof. We wish to show that $\{\rightarrow, \Omega\}$ is functionally complete. It will suffice to show that every formula $\varphi \in \mathbf{W F F}_{\{\rightarrow, \mathbf{F}\}}$ can be converted to a logically equivelant formula $\varphi^{\prime} \in \mathbf{W F F}_{\{\rightarrow, \mathcal{C}\}}$, as we have seen in class that $\mathbf{W F F}_{\{\rightarrow, \mathbf{F}\}}$ is functionally complete. We will show this by induction on $\mathbf{W F F}_{\{\rightarrow, \mathbf{F}\}}$.

Basis: For $\varphi=p_{i}, \varphi$ is already in $\mathbf{W F F}_{\{\rightarrow, \varnothing\}}$ without conversion, and they are trivially logically equivelant.

For $\varphi=\mathbf{F}$, take $\varphi^{\prime}=\bigcirc p_{0}$. By $T T_{\varrho}, M\left(\varphi^{\prime}, z\right)$ is 0 for any assignment z, as is $M(\varphi, 0)$, so the two are equivelant.

For $\varphi=\mathbf{T}$, take $\varphi^{\prime}=\left(\triangle p_{0} \rightarrow \odot p_{0}\right)$.

$$
\begin{aligned}
M\left(\varphi^{\prime}, z\right) & =M\left(\left(\bigcirc p_{0} \rightarrow \bigcirc p_{0}\right), z\right) \\
& =T T_{\rightarrow}\left(M\left(\oslash p_{0}, z\right), M\left(\bigcirc p_{0}, z\right)\right) \\
& =T T_{\rightarrow}(0,0)=1
\end{aligned}
$$

Closure: Assume the claim holds for φ_{1}, φ_{2}, that is, they are logically equivelant to $\varphi_{1}^{\prime}, \varphi_{2}^{\prime} \in \mathbf{W F F}_{\{\rightarrow, \bigcirc\}}$. Consider $\varphi=\varphi_{1} \rightarrow \varphi_{2}$, and $\varphi^{\prime}=\varphi_{1}^{\prime} \rightarrow \varphi_{2}^{\prime}$. Clearly $\varphi^{\prime} \in \mathbf{W F F}_{\{\rightarrow, \mathcal{})}$. As for logical equivelance,

$$
\begin{aligned}
M\left(\varphi^{\prime}, z\right) & =M\left(\varphi_{1}^{\prime} \rightarrow \varphi_{2}^{\prime}, z\right) \\
& =T T_{\rightarrow}\left(M\left(\varphi_{1}^{\prime}, z\right), M\left(\varphi_{2}^{\prime}, z\right)\right)
\end{aligned}
$$

But by the inductive assumption,

$$
\begin{aligned}
& =T T_{\rightarrow}\left(M\left(\varphi_{1}, z\right), M\left(\varphi_{2}, z\right)\right) \\
& =M(\varphi, z)
\end{aligned}
$$

1.2. Part B.

Proof. We wish to show that $\{\rightarrow, \oplus\}$ is functionally complete. It will suffice to show that every formula $\varphi \in \mathbf{W F F}_{\{\rightarrow, \mathbf{F}\}}$ can be converted to a logically equivelant formula $\varphi^{\prime} \in \mathbf{W F F}_{\{\rightarrow, \oplus\}}$, as we have seen in class that $\mathbf{W F F}_{\{\rightarrow, \mathbf{F}\}}$ is functionally complete. We will show this by induction on $\mathbf{W F F}_{\{\rightarrow, \mathbf{F}\}}$.

Basis: For $\varphi=p_{i}, \varphi$ is already in $\mathbf{W F F}_{\{\rightarrow, \oplus\}}$ without conversion, and they are trivially logically equivelant.

For $\varphi=\mathbf{F}$, take $\varphi^{\prime}=\left(p_{0} \oplus p_{0}\right)$. By $T T_{\oplus}, M\left(\varphi^{\prime}, z\right)$ is 0 for any assignment z, as is $M(\varphi, 0)$, so the two are equivelant.

For $\varphi=\mathbf{T}$, take $\varphi^{\prime}=\left(p_{0} \oplus p_{0}\right) \rightarrow\left(p_{0} \oplus p_{0}\right)$. Similarily to Part A, again we have that $\varphi, \varphi^{\prime}$ are logically equivlenat.
Closure: Precisely identical to Part A. Save the trees!

3. Question 3

3.1. Part A. The claim is true.

Proof. We are asked to show that $\{\psi \rightarrow \alpha, \alpha \rightarrow \beta, \beta \rightarrow \varphi\} \vdash \psi \rightarrow \varphi$. By deduction, it is enough to show that $\{\psi, \psi \rightarrow \alpha, \alpha \rightarrow \beta, \beta \rightarrow \varphi\} \vdash \varphi$. The following proof sequence will show that:

1. $\psi \quad$ Assumption
2. $\psi \rightarrow \alpha$ Assumption
3. $\quad \alpha \rightarrow \beta \quad$ Assumption
4. $\beta \rightarrow \varphi$ Assumption
5. $\alpha \quad \operatorname{MP}(1,2)$
6. $\beta \quad \operatorname{MP}(5,3)$
7. $\varphi \quad \operatorname{MP}(4,6)$

Thus $\{\psi, \psi \rightarrow \alpha, \alpha \rightarrow \beta, \beta \rightarrow \varphi\} \vdash \varphi$.
3.2. Part B. The claim is true.

We will prove a stronger property, that given the same conditions, for all $\varphi \in$ $\mathbf{W F F}_{\{\rightarrow, \mathbf{F}\}}$ it holds both that $\varphi \vdash \operatorname{subst}(\varphi, s)$ and $\operatorname{subst}(\varphi, s) \vdash \varphi$.

Proof. We'll prove by induction on the structure of subst.
Basis: If $\varphi=p_{i}$, then $\operatorname{subst}(\varphi, s)=s\left(p_{i}\right)$. We are given that $p_{i} \vdash s\left(p_{i}\right)$, thus $\varphi \vdash \operatorname{subst}(\varphi, s)$. Similarily, we are given that $s\left(p_{i}\right) \vdash p_{i}$, thus $\operatorname{subst}(\varphi, s) \vdash$ φ.

If $\varphi=\mathbf{F}$, then $\operatorname{subst}(\varphi, s)=\mathbf{F}$, then since clearly $\mathbf{F} \vdash \mathbf{F}$ (a proof sequence of length 1), we have that $\varphi \vdash \operatorname{subst}(\varphi, s)$ and $\operatorname{subst}(\varphi, s) \vdash \varphi$.
Closure: Assume that for $\varphi_{1}, \varphi_{2} \in \mathbf{W F F}_{\{\rightarrow, \mathbf{F}\}}$, it holds that $\operatorname{subst}\left(\varphi_{1}, s\right) \vdash$ $\varphi_{1}, \varphi_{1} \vdash \operatorname{subst}\left(\varphi_{1}, s\right), \operatorname{subst}\left(\varphi_{2}, s\right) \vdash \varphi_{2}, \varphi_{2} \vdash \operatorname{subst}\left(\varphi_{2}, s\right)$. We need to show that $\operatorname{subst}\left(\varphi_{1} \rightarrow \varphi_{2}, s\right) \vdash \varphi_{1} \rightarrow \varphi_{2}, \varphi_{1} \rightarrow \varphi_{2} \vdash \operatorname{subst}\left(\varphi_{1} \rightarrow \varphi_{2}, s\right)$. Note that $\operatorname{subst}\left(\varphi_{1} \rightarrow \varphi_{2}, s\right)=\operatorname{subst}\left(\varphi_{1}, s\right) \rightarrow \operatorname{subst}\left(\varphi_{2}, s\right)$. By the deduction theorem, it suffices to show that $\left\{\varphi_{1} \rightarrow \varphi_{2}, \operatorname{subst}\left(\varphi_{1}, s\right)\right\} \vdash \operatorname{subst}\left(\varphi_{2}, s\right)$, and $\left\{\varphi_{1}, \operatorname{subst}\left(\varphi_{1}, s\right) \rightarrow \operatorname{subst}\left(\varphi_{2}, s\right)\right\} \rightarrow \varphi_{2}$.

```
            1. \(\operatorname{subst}\left(\varphi_{1}, s\right) \quad\) (Assumption)
            \(\ldots \quad\left[\operatorname{subst}\left(\varphi_{1}, s\right) \vdash \varphi_{1}\right]\)
            \(n . \quad \varphi_{1}\)
First claim: \(n+1 . \quad \varphi_{1} \rightarrow \varphi_{2} \quad\) (Assumption) \({ }^{1}\)
    \(n+2 . \varphi_{2} \quad(\operatorname{MP}(n, n+1))\)
    \(\ldots \quad\left[\varphi_{2} \vdash \operatorname{subst}\left(\varphi_{2}, s\right)\right]\)
    \(m\). \(\operatorname{subst}\left(\varphi_{2}, s\right)\)
```

 1. \(\varphi_{1}\) (Assumption)
 \(\ldots \quad\left[\varphi_{1} \vdash \operatorname{subst}\left(\varphi_{1}, s\right)\right]\)
 n. \(\operatorname{subst}\left(\varphi_{1}, s\right)\)
 Second claim: \(n+1 . \operatorname{subst}\left(\varphi_{1}, s\right) \rightarrow \operatorname{subst}\left(v p_{2}, s\right) \quad\) (Assumption)
 \(n+2 . \operatorname{subst}\left(\varphi_{2}, s\right) \quad(\operatorname{MP}(n, n+1))\)
 \(\ldots . \quad\left[\operatorname{subst}\left(\varphi_{2}, s\right) \vdash \varphi_{2}\right]\)
 m. \(\quad \varphi_{2}\)
 [^6]3.3. Part C. The claim is true.

Proof. We are given a substitution s such that for any $i \in \mathbb{N}$, both $p_{i} \vdash s\left(p_{i}\right)$ and $s\left(p_{i}\right) \vdash p_{i}$. Therefore, by ??, we have that for any $\psi \in \mathbf{W F F}_{\{\rightarrow, \mathbf{F}\}}$, both $\psi \vdash \operatorname{subst}(\psi, s)$ and $\operatorname{subst}(\psi, s) \vdash \psi$. Privately, this also holds for any $\psi \in \Sigma$. Since $\Sigma \vdash \varphi$, and all proof sequences are finite, we know that only a finite number of formulae from Σ can be used in a proof. Therefore there exists a finite set $\Sigma^{\prime} \subseteq \Sigma$ such that $\Sigma^{\prime}=\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}\right\} \vdash \varphi$. We can therefore construct the following proof sequence to show $\operatorname{subst}\left(\Sigma^{\prime}, s\right) \vdash \operatorname{subst}(\varphi, s)$, and by monotonicity, we will have that $\operatorname{subst}(\Sigma, s) \vdash \operatorname{subst}(\varphi, s)$.

1. $\operatorname{subst}\left(\sigma_{0}, s\right) \quad$ (Assumption)
n. $\operatorname{subst}\left(\sigma_{n}, s\right) \quad$ (Assumption)
... $\quad\left[\operatorname{subst}\left(\sigma_{i}, s\right) \vdash \sigma_{i}\right]$
$m . \quad \sigma_{0}$
...
$m+n . \quad \sigma_{n}$
... $\quad\left[\Sigma^{\prime} \vdash \varphi\right]$
ξ. $\quad \varphi$
$\ldots \quad[\varphi \vdash \operatorname{subst}(\varphi, s)]$
$\zeta . \quad \operatorname{subst}(\varphi, s)$

4. Question 4

4.1. Part A.

Proof. We'll prove by induction on $\operatorname{Ded}_{N}(\emptyset)$.
Basis: There are no assumptions, so it suffices to show that the axioms are tautologies.

If $\varphi=\neg \alpha \rightarrow(\alpha \rightarrow \neg \alpha)$, for some $\alpha \in \mathbf{W F F}_{\{\neg, \rightarrow\}}$ then for any assignment z,

$$
M(\neg \alpha \rightarrow(\alpha \rightarrow \neg \alpha), z)=T T_{\rightarrow}\left(T T_{\neg}(M(\alpha, z)), T T_{\rightarrow}\left(M(\alpha, z), T T_{\neg}(M(\alpha, z))\right)\right)
$$

Now, $M(\alpha, z)$ is some constant $m \in\{0,1\}$. But for any such constant, clearly this expression evaluates to 1 :

- For $m=0$,

$$
\cdots=T T_{\rightarrow}\left(T T_{\neg}(0), T T_{\rightarrow}\left(0, T T_{\neg}(0)\right)\right)=T T_{\rightarrow}(1,1)=1
$$

- For $m=1$,
$\cdots=T T_{\rightarrow}\left(T T_{\neg}(1), T T_{\rightarrow}\left(1, T T_{\neg}(1)\right)\right)=T T_{\rightarrow}\left(0, T T_{\rightarrow}(1,0)\right)=T T_{\rightarrow}(0,0)=1$
If $\varphi=(\alpha \rightarrow(\alpha \rightarrow \neg \alpha)) \rightarrow(\alpha \rightarrow \neg \alpha)$, then for any assignment z,

$$
\begin{aligned}
& M(\alpha \rightarrow(\alpha \rightarrow \neg \alpha)) \rightarrow(\alpha \rightarrow \neg \alpha), z)= \\
& =T T_{\rightarrow(}\left(T T_{\rightarrow}\left(M(\alpha, z), T T_{\neg}(M(\alpha, z))\right), T T_{\rightarrow}\left(M(\alpha, z), T T_{\neg}(M(\alpha, z))\right)\right)
\end{aligned}
$$

Now, $M(\alpha, z)$ is some constant $m \in\{0,1\}$. But for any such constant, this expression evaluates to 1 :

- For $m=0$,

$$
\begin{aligned}
\ldots & =T T_{\rightarrow}\left(T T_{\rightarrow}\left(0, T T_{\neg}(0)\right), T T_{\rightarrow}\left(0, T T_{\neg}(0)\right)\right) \\
& =T T_{\rightarrow}\left(T T_{\rightarrow}(0,1), T T_{\rightarrow}(0,1)\right) \\
& =T T_{\rightarrow}(1,1)=1
\end{aligned}
$$

- For $m=1$,

$$
\begin{aligned}
\ldots & =T T_{\rightarrow}\left(T T_{\rightarrow}\left(1, T T_{\neg}(1)\right), T T_{\rightarrow}\left(1, T T_{\neg}(1)\right)\right) \\
& =T T_{\rightarrow}\left(T T_{\rightarrow}(1,0), T T_{\rightarrow}(1,0)\right) \\
& =T T_{\rightarrow}(0,0)=1
\end{aligned}
$$

Closure: Assume that $\varphi \rightarrow \psi, \varphi \in \operatorname{Ded}_{N}(\emptyset)$ are tautolgies, then $M(\varphi \rightarrow$ $\psi, z)=1$, for any assignment z. However,

$$
\begin{aligned}
1 & =M(\varphi \rightarrow \psi, z) \\
& =T T_{\rightarrow}(M(\varphi, z), M(\psi, z))
\end{aligned}
$$

But seeing as φ is a tautology as well,

$$
=T T_{\rightarrow}(1, M(\psi, z))
$$

And this can only hold if $M(\psi, z)=1$. We made no assumptions on z, thus it must hold for any assignment z, and we have that ψ is a tautology.

4.2. Part B.

Proof. We'll prove by induction on $\operatorname{Ded} d_{N}(\emptyset)$.
Basis: If $\varphi=\neg \alpha \rightarrow(\alpha \rightarrow \neg \alpha)$ for some $\alpha \in \mathbf{W F F}_{\{\neg, \rightarrow\}}$, then $\varphi^{*}=\alpha \rightarrow$ $(\alpha \rightarrow \alpha)$. For any assignment $z, M(\alpha, z)$ can be either 0 or 1 . If $M(\alpha, z)=$ 1 , then $M\left(\varphi^{*}, z\right)=T T_{\rightarrow}\left(1, T T_{\rightarrow}(1,1)\right)=1$, and if $M(\alpha, z)=0$, then $M\left(\varphi^{*}, z\right)=T T_{\rightarrow}\left(0, T T_{\rightarrow}(0,0)\right)=1$, thus $\vDash \varphi^{*}$.

If $\varphi=(\alpha \rightarrow(\alpha \rightarrow \neg \alpha)) \rightarrow(\alpha \rightarrow \neg \alpha)$, then $\varphi^{*}=(\alpha \rightarrow(\alpha \rightarrow \alpha)) \rightarrow$ $(\alpha \rightarrow \alpha)$. Therefore,
$M\left(\varphi^{*}, z\right)=T T_{\rightarrow}\left(T T_{\rightarrow}\left(M(\alpha, z), T T_{\rightarrow}(M(\alpha, z), M(\alpha, z))\right), T T_{\rightarrow}(M(\alpha, z), M(\alpha, z))\right)$
For any assignment z, either $M(\alpha, z)=1$, in which case

$$
\cdots=T T_{\rightarrow}\left(T T_{\rightarrow}\left(1, T T_{\rightarrow}(1,1)\right), T T_{\rightarrow}(1,1)\right)=1
$$

\ldots or $M(\alpha, z)=0$, in which case

$$
\begin{aligned}
\ldots & =T T_{\rightarrow}\left(T T_{\rightarrow}\left(0, T T_{\rightarrow}(0,0)\right), T T_{\rightarrow}(0,0)\right) \\
& =T T_{\rightarrow}\left(T T_{\rightarrow}(0,1), 1\right) \\
& =T T_{\rightarrow}(1,1)=1
\end{aligned}
$$

And again, we have that $\vDash \varphi^{*}$.
Closure: Assume $\varphi, \varphi \rightarrow \psi \in \operatorname{Ded}_{N}(\emptyset)$ and $\vDash \varphi^{*},(\varphi \rightarrow \psi)^{*}$. By definition of
${ }^{*}$, this also means that $\vDash \varphi^{*} \rightarrow \psi^{*}$, so we have that for any assignment z,

$$
\begin{aligned}
1 & =M\left(\varphi^{*} \rightarrow \psi^{*}, z\right)=T T_{\rightarrow}\left(M\left(\varphi^{*}, z\right), M\left(\psi^{*}, z\right)\right) \\
& =T T_{\rightarrow}\left(1, M\left(\psi^{*}, z\right)\right)
\end{aligned}
$$

And again, this is only possible if $\vDash \psi^{*}$.

4.3. Part C.

Disproof. Take $\varphi=\neg\left(p_{0} \rightarrow p_{0}\right) \rightarrow p_{0}$. Only two assignments are relevant - one which gives $p_{0} 0$, and one which gives it 1 . In either case, the meaning function on φ will give 1 , thus φ is a tautology. Assume by constrast that $\vdash_{N} \varphi$, then by ??, we have that $\vDash \varphi^{*}$. But $\varphi^{*}=\left(p_{0} \rightarrow p_{0}\right) \rightarrow p_{0}$, which is not a tautology - for $z_{\mathbf{T}}$, $M\left(\varphi^{*}, z_{\mathbf{F}}\right)=T T_{\rightarrow}\left(T T_{\rightarrow}(0,0), 0\right)=0$, and we have a contradiction. Thus the claim is false.

5. Question 5

Proof. We will prove by structure induction on $\operatorname{Ded}_{M_{1}}(\emptyset)$ that if $\alpha \in \operatorname{Ded}_{M_{1}}(\emptyset)$, then α is not a contradiction.

Basis: If $\alpha=\neg p_{i}$, then clearly α is not a contradiction $-M\left(\alpha, z_{\mathbf{F}}\right)=1$.
If $\alpha=\left(p_{i} \rightarrow p_{j}\right.$, then α is not a contradiction $-M\left(\alpha, z_{\mathbf{T}}\right)=1$.
If $\alpha=(\beta \rightarrow \beta)$, then as we've seen in class, α is a tautology, and privately not a contradiction.
Closure: If $\alpha_{1}, \alpha_{2} \in \operatorname{Ded}_{M_{1}}(\emptyset)$ are not contradictions, then there exists an assignment z for which $M\left(\alpha_{1}, z\right)=1$. For this assignment,

$$
\begin{aligned}
M\left(\neg \alpha_{1} \rightarrow \alpha_{2}, z\right) & =T T_{\rightarrow}\left(T T_{\neg}\left(M\left(\alpha_{1}, z\right)\right), M\left(\alpha_{2}, z\right)\right) \\
& =T T_{\rightarrow}\left(T T_{\neg}(1), M\left(\alpha_{2}, z\right)\right) \\
& =T T_{\rightarrow}\left(0, M\left(\alpha_{2}, z\right)\right)=1
\end{aligned}
$$

And thus $\neg \alpha_{1} \rightarrow \alpha_{2}$ is not a contradiction.

LOGIC \& SET THEORY - HW 9

OHAD LUTZKY

Please return to cell 7

1. Problem 1

1.1. Part A. Take $\delta_{\left(\gamma_{1} \vee \gamma_{2}\right)}=\left(\left(\gamma_{1} \rightarrow \mathbf{F}\right) \rightarrow \gamma_{2}\right)$.

γ_{1}	γ_{2}	$\gamma_{1} \vee \gamma_{2}$	$\left(\gamma_{1} \rightarrow \mathbf{F}\right)$	$\left(\left(\gamma_{1} \rightarrow \mathbf{F}\right) \rightarrow \gamma_{2}\right)$
0	0	0	1	0
0	1	1	1	1
1	0	1	0	1
1	1	1	1	1
We have that $\delta_{\left(\gamma_{1} \vee \gamma_{2}\right)}$	is logically equivalent to $\gamma_{1} \vee \gamma_{2}$.			

1.2. Part B. There are 3 claims here:

- A. X is maximally consistent
- B1. For all $\gamma_{1} \in \Gamma_{1}, \gamma_{2} \in \Gamma_{2}, X \vdash \delta_{\left(\gamma_{1} \vee \gamma_{2}\right)}$.
- B2. For all $\gamma_{1} \in \Gamma_{1}$, if $X \nvdash \gamma_{1}$, then for all $\gamma_{2} \in \Gamma_{2}, X \vdash \gamma_{2}$.

Proof. First direction - assume A,B1, and we'll show B2.
Let $\gamma_{1} \in \Gamma_{1}$ be a formula such that $X \nvdash \gamma_{1}$, and select an arbitrary $\gamma_{2} \in \Gamma_{2} . X$ is maximally consistent, thus $X \vdash \neg \gamma_{1}$. By soundness, we have that $X \vDash \neg \gamma_{1}$, and by completeness and $\mathrm{B} 1, X \vDash \delta_{\left(\gamma_{1} \vee \gamma_{2}\right)}$. By Part A, we have that $T T_{\vee}=T T_{\delta_{\vee}}$, and by $T T_{\vee}$, we have that $X \vDash \gamma_{2}$. By completeness, $X \vdash \gamma_{2}$.

Second direction - assume A,B2, and we'll show B1.
Let $\gamma_{1} \in \Gamma_{1}, \gamma_{2} \in \Gamma_{2}$.

- If $X \vdash \gamma_{1}$, then by soundness, $X \vDash \gamma_{1}$, and by $T T_{\delta_{\vee}}, X \vDash \delta_{\left(\gamma_{1} \vee \gamma_{2}\right)}$. By completeness, $X \vdash \delta_{\left(\gamma_{1} \vee \gamma_{2}\right)}$.
- If $X \nvdash \gamma_{1}$, then by B2, $X \vdash \gamma_{2}$, and by soundness, $X \vDash \gamma_{2}$. By $T T_{\delta_{v}}$, $X \vdash \delta_{\left(\gamma_{1} \vee \gamma_{2}\right)}$, and by completeness, $X \vdash \delta_{\left(\gamma_{1} \vee \gamma_{2}\right)}$.
Third direction - assume B, and we'll show A.
Assume by contrast that A is false. We are given that X is consistent, so assuming that A is false means assuming that it is not maximal, and thus there are two different assignments z, z^{\prime} which satisfy X. They are different, thus there is some p_{i} such that $z\left(p_{i}\right) \neq z^{\prime}\left(p_{i}\right)$. B is supposed to hold for any Γ_{1}, Γ_{2}, so we'll take $\Gamma_{1}=\left\{p_{i}\right\}, \Gamma_{2}=\left\{\neg p_{i}\right\}$. The prefix of \mathbf{B} holds: The only choice for γ_{1}, γ_{2} is $p_{i}, \neg p_{i}$, and then $\delta_{\left(\gamma_{1} \vee \gamma_{2}\right)}$ is a tautology. However, the suffix of B does not hold. Both z, z^{\prime} satisfy X, but one of them does not satisfy $\gamma_{1}=p_{0}$. Thus $X \not \nexists \gamma_{1}$. By B and completeness, this means that $X \vdash \gamma_{2}$, and by soundness $X \vDash \gamma_{2}$. But again, both z, z^{\prime} satisfy X, and one of them does not satisfy $\gamma_{2}=\neg p_{0}$, and thus $X \not \forall \gamma_{2}$ - a contradiction.

2. Problem 2

2.1. Part A. The claim is false. Take $\Sigma=\{\mathbf{F}\}, \alpha=p_{0}, \beta=p_{1}$. As we've shown in class, for any $\varphi \in \mathbf{W F F},\{\mathbf{F}\} \vdash \varphi$, therefore $\Sigma \vdash \alpha, \beta$. However, $\alpha \not \vDash \beta$, and by soundness $\alpha \nvdash \beta$, and this is true the other way around WLOG.

Claim 1 (Tautologies for tots). All formulae $\varphi \in \operatorname{Ded}_{N}(\Sigma)$ are tautologies, regardless of Σ.

Proof of Claim ??. We'll prove by structural induction.
Basis: In the basis of $\operatorname{Ded} d_{N}$ we have axioms and assumptions. For axioms, we have already shown in class that our chosen axioms are tautologies. For assumptions, all assumptions are of the form $\alpha \rightarrow\left(p_{0} \rightarrow p_{0}\right)$. By $T T_{\rightarrow}$, $p_{0} \rightarrow p_{0}$ is a tautology, and again by $T T_{\rightarrow}, \alpha \rightarrow\left(p_{0} \rightarrow p_{0}\right)$ is a tautology, regardless of α.
Closure: - $M P$: Assume $\psi, \psi \rightarrow \varphi$ are tautologies. Then by $T T_{\rightarrow}$, since $M(\psi, z)$ is 1 for any z, and $M(\psi \rightarrow \varphi, z)$ is 1 for any z, it must hold that $M(\varphi, z)$ is 1 for all z, thus φ is a tautology.

- As we've shown in the basis, f_{i} is always a tautology.
- Assume α is a tautology. If α is not of the required form, then $g(\alpha)=\alpha$ is a tautology. Otherwise, Changing the index p_{i} to p_{i+1} still leaves α a tautology.
2.2. Part B. The claim is true, since we've shown that for any $\varphi \in \operatorname{Ded}_{N}(\sigma)$, by Claim ??, $\vDash \varphi$, and by monotonicity, $\Sigma \vDash \varphi$.
2.3. Part C. The claim is true, because given that for some $\Sigma, \Sigma \vdash_{N} \varphi$, we have shown that φ is a tautology, that is, $\vDash \varphi$. So by monotonicity we have that $\{\alpha\} \vDash \beta,\{\beta\} \vDash \alpha$.
2.4. Part D. The claim is false. Take $\Sigma=p_{0}$. Clearly, $\Sigma \vDash p_{0}$. However, p_{0} is not a tautology ($z_{\mathbf{F}}$ does not satisfy it), and therefore $\Sigma \vdash_{N} p_{0}$.

3. Problem 3

3.1. Part A. The claim is false. Take $A_{1}=\left\{z \in A S S \mid z\left(p_{0}\right)=0\right\}, A_{2}=A S S \backslash A_{1}$. Clearly $A S S=A_{1} \cup A_{2}$. However, $A S S$ is not informative - if $\varphi \in \Gamma_{A S S}$, then any assignment satisfies it, and it is a tautology. All that remains is to show that A_{1}, A_{0} are informative. A_{1} is informative because $\neg p_{0} \in \Gamma_{A_{1}}$ - any assignment which assigns 0 to p_{0} satisfies $\neg p_{0}$. Similarily, $p_{0} \in \Gamma_{A_{2}}$, because no assignment in A_{2} assigns 0 to p_{0}.
3.2. Part B. The claim is false. Take A to be the set of all assignments which assign 1 to a finite number of variables. Take any finite subset $D \subseteq A$, then since any assignment $z \in D$ only assigns 1 to a finite number of variables, each one of them has a first variable to which it assigns 0 , and from that point on only 0 s are assigned. Therefore there is a variable p_{i} for which any $z \in D$ assigns $z\left(p_{i}\right)=0$, and we have that $\neg p_{i} \in \Gamma_{D}$, and seeing as $\neg p_{i}$ is not a tautology, D is informative.

All that remains is to show that A is not informative. Assume $\varphi \in \Gamma_{A} . \varphi$ is satisfied by any assignment which assigns 1 to a finite number of variables. Assume by negation that φ is, nevertheless, not a tautology. Then there exists some assignment z which does not satisfy it. Thus there is an assignment $z^{\prime} \in A$ which identifies with z on any variable which appears in φ - this is possible because φ can only have a finite number of variables in it. And then we have that z^{\prime} does not satisfy φ either, a contradiction. Then z is a tautology, and $\Gamma_{A} \subseteq T A U T$, and A is not informative.

3.3. Part C. The claim is true.

Proof. First direction:
$|A|=1$, that is, $A=\{z\}$. Therefore $z \vDash \Gamma_{A}$, and it is satisfiable. Assume that $\Gamma_{A} \subsetneq X$, and X is satisfiable. Then X is satisfied by some assignment $z^{\prime} \neq z$. Since those assignments are different, then there exists p_{i} such that $z\left(p_{i}\right) \neq z^{\prime}\left(p_{i}\right)$.

- If $z\left(p_{i}\right)=0$, then $z \vDash \neg p_{i}$, and $\neg p_{i} \in \Gamma_{A}$. However, $z^{\prime} \not \vDash \neg p_{i}$, and since $z^{\prime} \vDash X, \neg p_{i} \notin X$, in contradiction to $\Gamma_{A} \subseteq X$.
- If $z\left(p_{i}\right)=1$, then $z \vDash p_{i}$, and $p_{i} \in \Gamma_{A}$. However, $z^{\prime} \not \vDash p_{i}$, and since $z^{\prime} \vDash X$, $p_{i} \notin X$, in contradiction to $\Gamma_{A} \subseteq X$.
Either way, we have a contradiction. Thus such a set X does not exist.
Second direction:
Assume by negation that $|A| \neq 1$. If $|A|=0$ then $\Gamma_{A}=\mathbf{W F F}$, and since $\mathbf{F} \in \mathbf{W F F}, \Gamma_{A}$ is not satisfiable, a contradiction. Then $|A| \geq 2$. Then there are $z_{1}, z_{2} \in A$. Take $X=\Gamma_{\left\{z_{1}\right\}}$, then since $\left\{z_{1}\right\} \subseteq A$, then by definition of Γ_{0}, $\Gamma_{A} \subseteq \Gamma_{\left\{z_{1}\right\}}=X$. However, z_{1} and z_{2} disagree on some variable p_{i}. Assume WLOG that $z_{1}\left(p_{i}\right)=1 \neq z_{2}\left(p_{i}\right)$, then $p_{i} \in X \backslash \Gamma_{A}$. Then $\Gamma_{A} \subsetneq X$, yet X is satisfiable $z_{1} \vDash X$, a contradiction.

4. Problem 4

4.1. Part A.

$$
((\alpha \rightarrow \beta) \rightarrow((\beta \rightarrow \alpha) \rightarrow \mathbf{F})) \rightarrow \mathbf{F}
$$

4.2. Part B.

Proof. Assume $(\alpha, \beta) \in R_{\Sigma}$. Then $\Sigma \vdash \varphi_{\alpha, \beta}$. By soundness, $\Sigma \vDash \varphi_{\alpha, \beta}$. As we were asked not to prove, $T T_{\varphi_{0}, \circ}=T T_{\leftrightarrow}$, thus any assignment which satisfies $\varphi_{\alpha, \beta}$, by $T T_{\varphi_{0}, \circ}$, satisfies $\varphi_{\beta, \alpha}$. Then $\Sigma \vDash \varphi_{\beta, \alpha}$, and by completeness, $\Sigma \vdash \varphi_{\beta, \alpha}$, and $(\beta, \alpha) \in R_{\Sigma}$.

4.3. Part C. $\left|\mathbf{W F F}_{\{\rightarrow, \mathbf{F}\}} / R_{\Sigma}\right|=1$

Proof. Let Σ be an inconsistent set. Thus any formula $\varphi \in \mathbf{W F F}$ can be proven by it - that is, $\Sigma \vdash \varphi$. In particular, this also holds true for any $\varphi_{\alpha, \beta}$, for any two formulae $\alpha, \beta \in \mathbf{W F F}$. Thus all formulae are equivalent under R_{Σ}, and there is only one equivalence class.

4.4. Part D. $\left|\mathbf{W F F}_{\{\rightarrow, \mathbf{F}\}} / R_{\Sigma}\right|=2$

Proof. Let Σ be a maximally consistent set. As we've shown in class, this means that there is precisely one assignment z such that $z \vDash \Sigma$. Take two formulae $\alpha, \beta \in$ WFF. Iff $M(\alpha, z)=M(\beta, z)$, then by $T T_{\leftrightarrow}, M\left(\varphi_{\alpha, \beta}, z\right)=1$, and since z is the only assignment which satisfies $\Sigma, \Sigma \vdash \varphi_{\alpha, \beta}$, and by completeness, $(\alpha, \beta) \in R_{\Sigma}$. Therefore any formula φ is equivalent under R_{Σ} precisely to any formula ψ which receives $M(\psi, z)=M(\varphi, z)$, and seeing as there are two options for this value (1 or 0), then there are two equivalence classes.

5. Problem 5

5.1. Part A.

Proof. First direction:
Assume $K \neq \emptyset$. Let Σ be a set of formulae such that Σ is sound for K. Assume by contrast that Σ is inconsistent, then $\Sigma \vdash \mathbf{F} . \Sigma$ is sound for K, thus $\mathbf{F} \in \operatorname{Th}(K)$. Therefore, for any assignment $z \in K, z \vDash \mathbf{F}$. But there do not exist any assignments which satisfy \mathbf{F}, thus $K=\emptyset-$ a contradiction.

Second direction:
Assume by contrast that $K=\emptyset$. Then by definition, trivially, $T h(K)=\mathbf{W F F}$. Take $\Sigma=$ WFF. For any formula φ, WFF $\vdash \varphi$ because WFF is inconsistent. Thus WFF is sound for K. But $\mathbf{F} \in \mathbf{W F F}$, thus $\Sigma=\mathbf{W F F}$ is not consistent - a contradiction.

5.2. Part B.

Proof. First direction:

Assume $|K| \leq 1$, and let Σ be complete for K.

- If $K=\emptyset$, by Part A, $T h(K)=$ WFF. We now need to show that Σ is maximal. Take a formula φ. Then since $T h(K)=\mathbf{W F F}, \varphi \in T h(K) . \Sigma$ is complete for K, thus $\Sigma \vdash \varphi$. We have shown that Σ is maximal.
- If $|K|=1, K=\{z\}$. Let Σ be complete for K, and φ be an arbitrary formula.
- If $z \vDash \varphi$, then $z \in T h(K)$. Since Σ is complete for $K, \Sigma \vdash \varphi$.
- If $z \not \vDash \varphi$, then by $T T_{\neg}, z \vDash \neg \varphi$. Thus $\neg \varphi \in T h(K)$. Σ is complete for K, therefore $\Sigma \vdash \neg \varphi$.
We have shown that either $\Sigma \vdash \varphi$ or $\Sigma \vdash \neg \varphi$ for an arbitrary formula φ, thus Σ is maximal.
Second direction:
Assume by contrast $|K|>1$. Choose $\Sigma=T h(K)$. Σ is complete for $K-$ if $\varphi \in T h(K)$, then $\varphi \in \Sigma$, thus $\Sigma \vdash \varphi$ with a trivial proof sequence. For a contradiction, we will show that Σ is not maximal.
$|K| \geq 2$, thus $z_{1}, z_{2} \in K, z_{1} \neq z_{2}$. z_{1}, z_{2} disagree on some variable p_{i} - either $z_{1} \not \models p_{i}$ or $z_{2} \not \models p_{i}$. Thus $\Sigma \not \models p_{i}$, and by soundness, $\Sigma \nvdash p_{i}$. However, the same argument also shows that $\Sigma \nvdash \neg p_{i}$, and by soundness, $\Sigma \nvdash \neg p_{i}$. Thus Σ is not maximal, and we have our contradiction.

5.3. Part C.

Proof. First direction:
Assume $|K| \geq 2 . z_{1}, z_{2} \in K$ disagree on some variable p_{i}. Thus, $p_{i}, \neg p_{i} \notin T h(K)$. Σ is sound for K, thus $\Sigma \nvdash p_{i}, \neg p_{i}$, and Σ is not maximal.

Second direction:
Assume $|K| \leq 1$, and choose $\Sigma=T h(K)$ - we will show it to be both sound for K and maximal. Let φ be a formula such that $\Sigma \vdash \varphi$. By soundness we have that $\Sigma \vDash \varphi, T h(K) \vDash \varphi$, and by definition of $T h, \varphi \in T h(K)$.

Now we will show that Σ is maximal.

- If $K=\emptyset$, then similarily to part $A, T h(K)=\mathbf{W F F}$, thus $T h(K) \vdash \varphi$ for any $\varphi \in \mathbf{W F F}$. Therefore $T h(K)$ is maximal.
- If $K=\{z\}$, then let φ be some formula.
- If $z(\varphi)=1$, then $\varphi \in T h(K)$, and $T h(K) \vdash \varphi$ trivially.
- If $z(\varphi)=0$, then $\neg \varphi \in T h(K)$, and $T h(K) \vdash \neg \varphi$ trivially.

We have shown that either $T h(K) \vdash \varphi$ or $T h(K) \vdash \neg \varphi$, thus $T h(K)$ is maximal.

LOGIC \& SET THEORY - HW 11

OHAD LUTZKY

2. Question 2

2.1. Part A. The statement is a tautology.

Proof. Let $\mathfrak{A}=\left\langle A, R^{M}, P^{M}, F^{M}\right\rangle$ be a τ-structure and z be an assignment. We will evaluate the meaning function $M\left(\varphi_{1}, \mathfrak{A}, z\right)$:

$$
\begin{aligned}
M\left(\varphi_{1}, \mathfrak{A}, z\right) & =M\left(\forall v_{1} P\left(v_{1}\right) \rightarrow \forall v_{2} P\left(F\left(v_{2}\right)\right), \mathfrak{A}, z\right) \\
& =T T_{\rightarrow}\left(M\left(\forall v_{1} P\left(v_{1}\right), \mathfrak{A}, z\right), M\left(\forall v_{2} P\left(F\left(v_{2}\right)\right), \mathfrak{A}, z\right)\right)
\end{aligned}
$$

To show that $T T_{\rightarrow}$ always receives 1 , we will show that if $\mathfrak{A} \vDash_{z} \forall v_{1} P\left(v_{1}\right)$, then $\mathfrak{A} \vDash_{z} \forall v_{2} P\left(F\left(v_{2}\right)\right)$. Assuming that indeed the prefix is satisfied, we see that for any $d \in A, \mathfrak{A} \vDash_{z\left[v_{2} \leftarrow d\right]} P\left(v_{2}\right)$, which in turn means that for any $d \in A, d \in P^{\mathfrak{A}}$.

Note that $F^{\mathfrak{A}}$ is a function $A \rightarrow A$, thus for any $d \in D, F^{\mathfrak{A}}(d) \in P^{\mathfrak{A}}$. This means that for any assignment $z^{\prime}, \mathfrak{A} \vDash_{z} P\left(F\left(v_{2}\right)\right.$. In particular, this also holds for corrected assignments, hence $\mathfrak{A} \vDash_{z} \forall v_{2} P\left(F\left(v_{2}\right)\right)$.
2.2. Part B. The statement is not a tautology. Consider

$$
\mathfrak{A}=\left\langle A=\{0,1\}, R^{\mathfrak{A}}=\emptyset, P^{\mathfrak{A}}=\{0\}, F^{\mathfrak{A}}=d \mapsto 0\right\rangle, z\left(v_{i}\right)=1
$$

Under any assignment, particularly a corrected one, the prefix is satisfied - as $F^{\mathfrak{A}}\left(v_{1}\right)=0$ for any value of $v_{1}, F^{\mathfrak{A}}\left(v_{1}\right) \in P^{\mathfrak{A}}$ for any assignment, and we have that $\mathfrak{A} \vDash_{z} \forall v_{1} P\left(F\left(v_{1}\right)\right)$. As for the suffix, however - its meaning evaluates to 0 : There exists a value $d=1 \in A$ for which $d \notin P^{\mathfrak{A}}$, thus it is not true that "for every $d \in A$, $\mathfrak{A} \vDash_{z\left[v_{2} \leftarrow d\right]} P\left(v_{2}\right)$ ", and thus $\mathfrak{A} \not \forall_{z} \forall v_{2} P\left(v_{2}\right)$. Due to the properties of $T T_{\rightarrow}$, this means that $\mathfrak{A} \not \forall_{z} \varphi_{2}$.
2.3. Part C. The statement is not a tautology. Take

$$
\mathfrak{A}=\langle\mathbb{Z},<, \emptyset,+\rangle, z\left(v_{i}\right)=0
$$

Under any assignment, the meaning of the prefix is true: For any integer a there exists an integer b such that $a<b$. Therefore, for any assignment z which assigns $z\left(v_{1}\right)=a$, there exists $b \in \mathbb{Z}$ such that $M\left(R\left(v_{1}, v_{2}\right), \mathfrak{A}, z\left[v_{2} \leftarrow b\right]\right)=1$. Hence for any such assignment $z, M\left(\exists v_{2} R\left(v_{1}, v_{2}\right), \mathfrak{A}, z\right)=1$. Equivalently, for any assignment z at all, for any $a \in \mathbb{Z}, M\left(\exists v_{2} R\left(v_{1}, v_{2}\right), \mathfrak{A}, z\left[v_{1} \leftarrow a\right]\right)=1$, which means that $M\left(\forall v_{1} \exists v_{2} R\left(v_{1}, v_{2}\right), \mathfrak{A}, z\right)=1$.

3. Question 3

3.1. Part A.

Proof. We will notate $M=\left\langle A, P^{M}, F^{M}, c^{M}\right\rangle$. Assume by contrast that there exists a term t over τ and an assignment z for which $M \not \forall_{z} P(t)$. Hence it does not hold that $\bar{z}(t) \in P^{M}$. Since by definition, $\bar{z}(t) \in A$, then we have found an assignment z and an element $d \in A$ for which $M \not \forall_{z\left[v_{1} \leftarrow d\right]} P\left(v_{1}\right)$. Consequently, $M \not \vDash \forall v_{1} P\left(v_{1}\right)$.
3.2. Part B. The requested set is defined as an inductive set $X_{\tilde{B}, \tilde{F}}$ with $B=\{c\}$, $\tilde{F}=\{t \mapsto F(t)\}$
3.3. Part C. We will show by structural induction over $X_{\tilde{B}, \tilde{F}}$ as defined.

Basis: There is only one case in the basis, c. Let M, z be a τ-structure and an assignment respectively. If $M \vDash_{z} \Sigma$, then by definition $M \vDash_{z} P(c)$.
Closure: We will assume by induction that $\Sigma \vDash P(t)$, and show that $\Sigma \vDash$ $P(F(t))$. Let M be a τ-structure and z be an assignment. We will denote $t^{M}=\bar{z}(t)$. If $M \vDash_{z} \Sigma$, then $M \vDash_{z} \forall v_{1}\left[P\left(v_{1}\right) \rightarrow P\left(F\left(v_{1}\right)\right)\right]$. This holds only if for any $d \in A(A$ being the domain of the structure $M), M \vDash_{z\left[v_{1} \leftarrow d\right]}$ $P\left(v_{1}\right) \rightarrow P\left(F\left(v_{1}\right)\right)$. In particular, it must hold for $d=t^{M}$. Note that for this choice of d, the prefix is satisfied: By the inductive assumption, $\Sigma \vDash P(t)$, thus $M \vDash_{z} P(t)$. This shows that

$$
t^{M}=\bar{z}\left[v_{1} \leftarrow t^{M}\right]\left(v_{1}\right) \in P^{M}
$$

Thus, $M \vDash_{z\left[v_{1} \leftarrow t^{M}\right]} P\left(v_{1}\right)$. Due to the properties of $T T_{\rightarrow}$, we have that $M \vDash_{z\left[v_{1} \leftarrow t^{M}\right]} P\left(F\left(v_{1}\right)\right)$. Therefore, $\bar{z}\left[v_{1} \leftarrow t^{M}\right]\left(F\left(v_{1}\right)\right) \in P^{M}$. We note that

$$
\bar{z}\left[v_{1} \leftarrow t^{M}\right]\left(F\left(v_{1}\right)\right)=\bar{z}(F(t))
$$

Therefore, $\bar{z}(F(t)) \in P^{M}$ - and we have shown that $M \vDash_{z} P(F(t))$.
3.4. Part D. The claim is false. Take $\mathfrak{A}=\langle\{0,1\},\{0\}, a \mapsto\{0\}, 0\rangle$. Under any assignment, both statements are satisfied - in the latter obviously $0 \in\{0\}$, and for any assignment to v_{1}, the suffix of the former is satisfied as $F^{\mathfrak{A}}(\ldots)=0 \in\{0\}$, and thus the entire statement is satisfied. However, the statement $\forall v_{1} P\left(v_{1}\right)$ is not satisfied, as for $d=1, \bar{z}\left[v_{1} \leftarrow d\right]\left(v_{1}\right)=1 \notin\{0\}$, thus $\Sigma \not \vDash \forall v_{1} P\left(v_{1}\right)$.

4. Question 4

4.1. Part A. The claim is false. Consider $M=\langle\mathbb{Z}, \leq,+\rangle, M^{\prime}=\langle\{0\},\{0,0\},+\rangle$. Clearly, $\{0\} \subseteq Z,\{0,0\}=" \leq " \cap\{0\}^{2}$, if $a, b \in\{0\}$ then $a+b=0 \in\{0\}$, and $0+0=0$ in M as well. However, consider the term $F\left(v_{1}, v_{1}\right)$ specifies 0 in M^{\prime} (for any assignment of v_{1} within $\{0\}, \bar{z}_{M^{\prime}}\left(F\left(v_{1}, v_{1}\right)\right)=0+0=0$. However, in $M, F\left(v_{1}, v_{1}\right)$ does not specify 0 . For example, with the assignment $z=v_{i} \mapsto 1$, $\bar{z}_{M}\left(F\left(v_{i}, v_{i}\right)\right)=2$.
4.2. Part B. The claim is true.

Lemma 1. If v_{1}, \ldots, v_{n} are the free variables of $\varphi, d_{1}, \ldots, d_{n} \in B$, and $z\left(v_{1}\right)=$ $d_{1}, \ldots, z\left(v_{n}\right)=d_{n}$, then $M\left(\varphi, M^{\prime}, z\right)=M(\varphi, M, z)$.

Proof of Lemma ??. We will prove inductively that for any such z, and a term t with only the variables in $v_{1}, \ldots, v_{n}, \bar{z}_{M}(t)=\bar{z}_{M^{\prime}}(t)$, and as a result, $\bar{z}_{M}(t) \in B$.

Basis: If $t=v_{i}$ with $1 \leq i \leq n$, then $z_{M}(t)=z_{M^{\prime}}(t)$ trivially.
Closure: If the claim holds for terms t_{1}, t_{2}, then by definition of $F^{M^{\prime}}, z_{M}\left(t_{i}\right)=$ $z_{M^{\prime}}\left(t_{i}\right) \in B$. Then by definition of a substructure,

$$
\begin{aligned}
\bar{z}_{M^{\prime}}\left(F\left(t_{1}, t_{2}\right)\right) & =F^{M^{\prime}}\left(\bar{z}_{M^{\prime}}\left(t_{1}\right), \bar{z}_{M^{\prime}}\left(t_{2}\right)\right. \\
& =F^{M^{\prime}}\left(\bar{z}_{M}\left(t_{1}\right), \bar{z}_{M}\left(t_{2}\right)\right) \\
& =F^{M}\left(\bar{z}_{M}\left(t_{1}\right), \bar{z}_{M}\left(t_{2}\right)\right) \\
& =z_{M}\left(F\left(t_{1}, t_{2}\right)\right)
\end{aligned}
$$

Now we will prove that for any such z and an atomic formula φ with only the variables in $v_{1}, \ldots, v_{n}, M\left(\varphi, M^{\prime}, z\right)=M(\varphi, M, z)$. For formulas of the form $t_{1} \approx t_{2}$, this clearly holds because we've shown that $\bar{z}_{M}(t)=\bar{z}_{M^{\prime}}(t)$. It remains to show for formulas of the form $R\left(t_{1}, t_{2}\right) . \quad M\left(R\left(t_{1}, t_{2}\right), M, z\right)=1 \mathrm{iff}\left(\bar{z}_{M}\left(t_{1}\right), \bar{z}_{M}\left(t_{2}\right)\right) \in$ $\left.R^{M}\right)$. But as we've shown, for this kind of $z, \bar{z}_{M}\left(t_{i}\right) \in B$, thus this holds iff $\left(\bar{z}_{M}\left(t_{1}\right), \bar{z}_{M}\left(t_{2}\right)\right) \in R^{M} \cap B^{2}$. By definition of a substructure, $R^{M} \cap B^{2}=R^{M^{\prime}}$, so this holds iff $\left(\bar{z}_{M}\left(t_{1}\right), \bar{z}_{M}\left(t_{2}\right)\right) \in R^{M^{\prime}}$, and by the equality we've shown, all of this holds iff $\left(\bar{z}_{M^{\prime}}\left(t_{1}\right), \bar{z}_{M^{\prime}}\left(t_{2}\right)\right) \in R^{M^{\prime}}$, which is true iff $M\left(\varphi, M^{\prime}, z\right)=1$.

We have shown that atomic formulae get the same meaning in both M and M^{\prime} under our specified kind of assignment, and due to the properties of the inductive definition of $F O L$, all formulae get the same meaning in both M and M^{\prime} under these assignments.

Proof of Part B. First direction:
Consider $\left(d_{1}, \ldots, d_{n}\right) \in[\varphi]_{M^{\prime}}$. By definition of a substructure, $D^{M^{\prime}} \subseteq D^{M}$, thus $\left(d_{1}, \ldots, d_{n}\right) \in B^{n}$, and all that remains is to show $\left(d_{1}, \ldots, d_{n}\right) \in[\varphi]_{M}$. By definition of $[\varphi]_{M^{\prime}}$, for any assignment z such that $z\left(v_{1}\right)=d_{1}, \ldots, z\left(v_{n}\right)=d_{n}$, $M^{\prime} \vDash_{z} \varphi$. Then by Lemma ??, $M \vDash_{z} \varphi$, thus $\left(d_{1}, \ldots, d_{n}\right) \in[\varphi]_{M}$.

Second direction:
Consider $\left(d_{1}, \ldots, d_{n}\right) \in[\varphi]_{M} \cap B^{n}$. By definition of $[\varphi]_{M}$, for any assignment z such that $z\left(v_{1}\right)=d_{1}, \ldots, z\left(v_{n}\right)=d_{n}, M \vDash_{z} \varphi$. Also, $\left(d_{1}, \ldots, d_{n}\right) \in B^{n}$. Then by Lemma ??, $M^{\prime} \vDash_{z} \varphi$, thus $\left(d_{1}, \ldots, d_{n}\right) \in[\varphi]_{M^{\prime}}$.
4.3. Part C. The claim is false. Consider M, M^{\prime} as defined previously, and $\varphi=$ $\forall v_{2} R\left(v_{1}, v_{2}\right)$. Clearly, $[\varphi]_{M^{\prime}}=\{0\}$, as the formula is satisfied by any assignment in M^{\prime}. However, $[\varphi]_{M}=\emptyset: M \vDash_{z} \varphi$ iff $\bar{z}\left[v_{2} \leftarrow d\right]\left(v_{1}\right)<\bar{z}\left[v_{2} \leftarrow d\right]\left(v_{2}\right)$, or equivalently $z\left(v_{1}\right)<d$, for any d. We know that there is no such assignment on v_{1}, thus there is no $d_{1} \in[\varphi]_{M}$.

5. Question 5

5.1. Part A.

Proof. Consider the atomic formula $\left(\varphi \rightarrow \varphi^{f}\right)$. Due to the properties of $T T_{\rightarrow}$, it will suffice to show that if $M \vDash \varphi$, then $M \vDash \varphi^{f}$. Since we are disregarding the equality symbol, then φ is of the form $P(t)$ for some term t. We know that φ is satisfied, therefore for any assignment $z, \bar{z}(t) \in P^{M}$. It remains to show that $\bar{z}\left(t^{f}\right) \in P^{M}, t^{f}$ being the replacement of any x by $f(x)$ in t. We will prove this by structural induction over the terms:

Basis: Take $t=c$, and assume $z(c) \in P^{M}$. As $c^{f}=c$, (it has no variables), we have that $z\left(c^{f}\right) \in P^{M}$.

Take $t=v_{i}$, and let z be an assignment. Assume $z\left(v_{i}\right) \in P^{M} . t^{f}=f\left(v_{i}\right)$. By monotonicity, we have that $M \vDash \forall v_{i}\left(\left(P\left(v_{i}\right) \rightarrow P\left(f\left(v_{i}\right)\right)\right)\right.$, meaning that for any $d \in D, D$ being the domain of $M, M \vDash_{z\left[v_{i} \leftarrow d\right]} P\left(v_{i}\right) \rightarrow P\left(f\left(v_{i}\right)\right)$. This must also hold for the uncorrected z, that is, $M \vDash_{z} P\left(v_{i}\right) \rightarrow P\left(f\left(v_{i}\right)\right)$. Observing $T T_{\rightarrow}$, and noting that by our assumption $M \vDash_{z} P\left(v_{i}\right)$, we see that $M \vDash_{z} P\left(f\left(v_{i}\right)\right)$. This is satisfied only if $\bar{z}\left(f\left(v_{i}\right)\right) \in P^{M}$.
Closure: Assume that for the term $t, \bar{z}(t) \in P^{M}$. By the exact same argument as in the basis, we have that $\bar{z}(f(t)) \in P^{M}$.

5.2. Part B.

Proof. We will show by structural induction over $F O L$.

Basis: We've shown in Part A that for atomic formulae, if $M \vDash \varphi$ then $M \vDash \varphi^{f}$, which suffices.
Closure: Assume that for ψ_{1}, ψ_{2}, if $M \vDash \psi_{i}$ then $M \vDash \psi_{i}^{f}$.
For the case of \vee, it suffices to show that if either $M \vDash \psi_{1}$ or $M \vDash \psi_{2}$, then either $M \vDash \psi_{1}^{f}$ or $M \vDash \psi_{2}^{f}$. Assume WLOG that $M \vDash \psi_{1}$. Then by the inductive assumption, $M \vDash \psi_{1}^{f}$.

For the case of \wedge, it suffices to show that if both $M \vDash \psi_{1}$ and $M \vDash \psi_{2}$, then $M \vDash \psi_{1}^{f}$ and $M \vDash \psi_{2}^{f}$ — but again, this is a direct consequence of our inductive assumption.

For the cases of the \forall, \exists quantifiers - they have no effect. Our inductive assumption holds for all assignments, corrected or otherwise.

[^0]: ${ }^{1}$ If there's anything wrong with that example, replace "real" with "even", "imaginary" with "odd", " 1 " with 0 , " $\sqrt{-1}$ " with " 1 ", and " $\mathbb{C} "$ with " \mathbb{Z} ".

[^1]: ${ }^{1}$ See question 4 A

[^2]: ${ }^{1}$ It was not explicitly specified that the empty work $\epsilon \in \Sigma^{*}$, but the claim is false otherwise

[^3]: ${ }^{1}$ We will say that φ is a proper prefix of ψ if $\varphi \neq \sigma, \varphi \neq \psi$, and φ is a prefix of ψ.

[^4]: ${ }^{1}$ We denote z satisfies $\varphi \in \mathbf{W F F}$ or z satisfies $\Sigma \in \wp(\mathbf{W F F})$ by $z \vDash \varphi, z \vDash \Sigma$ respectively

[^5]: ${ }^{2}$ As per usual, $\chi_{A}(t)= \begin{cases}1, & t \in A \\ 0, & t \notin A\end{cases}$

[^6]: ${ }^{1}$ I denote by $[\psi \vdash \varphi]$ or $[\Sigma \vdash \varphi]$ that here one inserts the proof sequence that relies only on ψ or Σ respectedly, and ends with φ (without the last step, which is inserted explicitly). Naturally, it is only valid if we have indeed listed ψ or all of Σ before this point in the proof, and the stated condition does indeed hold. If there is a more widely accepted form of notation for this, please let me know.

