VHDL

1% 12N DNPY MTMPOD XN

Entity and Architecture

Entity is a declaration of a component, architecture is the implementation of the component. It is possible to have
several different architectures for one entity (choose which one with Configuration).

entity AndGate is
port(
a, b : in std_logic; -- inputs
C : out std_logic); -- outputs
end AndGate;

architecture beh of AndGate is
begin

c <= a and b;
end beh;

Architecture with Components

It is possible to build a component using other sub-components defined elsewhere. This enables a modular design
(divide one large component into several smaller ones).

entity NandGate is

port(i .
A, B : in std_logic; -- inputs
C : out std_logic); -- outputs

end NandGate;

architecture struct of NandGate is

signal my_sig : std_logic; -- we need an extra signal for connecting both
component AndGate -- this 7s a copy of the entity of AndGate
port())
a, b : in std_logic; -- Tnputs
C : out std_logic); -- outputs
end component;
component NotGate -- this 7s a copy of the entity of NotGate
port() .
inl : in std_logic; -- 1nputs
outl : out std_logic); -- outputs
end component;
begin .
my_and : AndGate . -- one instance of type AndGate
port map(a => A , b => B , ¢ => my_sig); -- connections: component => external
my_not : NotGate -- one instance of type NotGate
port map(inl => my_sig , outl => C); -- connections: component => external
end struct;

Architecture with Processes

It is possible to build a component using sequencial logic (similar to a programming language). It is possible to have
several processes, and also to combine both processes and sub-components and normal combinational logic.

Sensitivity List: A process runs according to a sensitivity list. If one signal in the list is updated, the process re-
runs. If the sensitivity list is empty, the process will loop forever. Each process runs once on simulation start. If the
process updates one of its own sensitivity list signals, it will run again when it terminates (sensitivity updated).

Process Run Algorithm: Run once on simulation start. When finished running, check if sensitivity signals are
different from when we started this run. If so, run again from the start. If not, wait until a sensitivity signal is
updated. If the sensitivity list is empty, always run again (loop forever).

Process Signal Assignments: (1) If a signal has several different assignments, only the last one is relevant. (2) All
signal assignments are executed together when the process finishes. So all calculations using signals in the middle of
the process are always done with the original signal value from when the process started. (3) Signals that are
changed in a process are always changed (even if they are inside an IF that is not executed). If it is not stated to
which value the signal should be changed, it will change to its original value from the start of the run.

Multiple Processes: All processes run together in the same time, collisions will result 'X' values.

architecture arch of NandGate is
begin

rocess(A, B) -- sensitivity 1ist, run process again 1f any of these change
egin

C<=not (AandB);
end process;

end arch;

Signals

A signal is the basic combinational data type. All the inputs and outputs of a component are signals.

Signal Bit Values: The standard values for a single bit are '0' and '1' (boolean values). The additional simulation
values are 'X' and 'Z'. If the same signal is assigned by 2 different components different values it will receive the
value 'X' to indicate an error (example: 2 components write to a bus in the same time). When you want to indicate
that a signal does not have a value (simply not connected) assign it the 'Z' value. This means "high Z" (used in tri-
state buffers). In a bus, most components will assign the bus 'Z' except the current talker which will assign '0' or '1".

architecture arch of Something

signal one_bit : std_logic; -- extra signal declarations here
signal bl, b2 : std_logic; -- defined in IEEE.std _Togic_1164
signal b1t vec : std_logic_vector(31l downto 0); -- a b7t vector with 32 bits
signal vl, v2 : std_logic_vector(7 downto 0); -- bit vectors with 8 bits

begin
one_bit <= '0"; -- assign 0
bl <= 'Z"; -- assign "high z"
b2 <= '1"' after 15 ns; -- assign after some delay
bit_vec <= "11110000111100001111000011110000"'
b1t _vec(0) <= '1" -- assign only one bit (the Isb) in the entire vector

<= bit. _vec(10 downto 3);
v%(? downto 5) <= "101";

<= (2= "1", others == '0' -- assign the value 0x04
v2 <= "101" & v1(7) & bit_vec(31 downto 30) & "00";
v2 <= X"3A"; -- assign Ox3a
bl <= not ((bl and b2) or (bl xor 'l') or (b2 nand '0'));
vl <= not ((vl and v2) or (vl xor X"FF") or (v2 nand x"00™));
v1(3 downto 0) <= v2(2 downto 0) + "002" -- keep the carry
vl <= v2 + X"30" - vl; -- 7gnore the carry
vl <= v1(3 downto 0) * v2(3 downto 0); -- need double the bits for res

bl <= '0' when b2 = '1' else b2 when v1(0) /= '0' else 'Z';

with bit_vec(1l downto 0) se'lect
vl <= "00000000" when "00"
"00000001" when "01"
v2 when "10",
"11111111" when others;

Sequential Statements in Processes

Since a process runs all statements in sequence, it has special sequencial syntax which can't be used in normal
combinational logic. Processes can also have variables which are special virtual data holders that exist only inside the
process (just like variables in a programming language) — variables and signals are different.

process (bl, b2)

variable var : std_logic_vector(3 downto 0); -- a7l variable declarations here
variable j : integer := 0;

begin) .)
var := "1101"; -- variables use := for assignment (signals use <=)

if (bl ='0") or ((b2 /= '1') and (b1l = 'Z')) then b1 <= '1";
e'lcszFf(vl > v2) or (vl <= "00001111") then bl <= '0'
end if;

1'Fd(v?fl:(3 downto 0) = "0000") then vl <= "0001"; else vl <= "1111";
end if;

for i in 3 downto O Toop
var(i) := v2(@i);
end loop;

for i in 7 - conv, 1nteger(v2) + 1 to 7 Toop
vli(i) <= v1(7 - i
end loop;

while (j < 256) loop
=31+ 1
end loop;

case vl is
when "0000" => var := v2(3 downto 0);
when "0001" => var := v1(3 downto 0);
when "0101" => v2 <= "0000" & var;
when others => var := (others => 'X');
end case;

wait for 10 ns; -- use wait; to wait endlessly

Mux

A simple example of a 2 to 1 mux with N bits as inputs and outputs (for example choose between two 32 bit values).

entity Mux_2tol is
generic(WIDTH : integer := 32);

port(
sel : in std_logic;
d_inl, d_in2 : in std_logic_vector((WIDTH-1) downto O);
d_out : out std_logic_vector((WIDTH-1) downto 0));

end Mux_2tol;

architecture beh of Mux_2tol is
begin
with sel select
d_out <= d_inl when '0',
d_in2 when '1',
(others => 'X') when others;
end beh;

Register

A simple example of a register with N bits and support for load.

entity Reg_with_Tload is
generic(WIDTH : integer := 32);

port(
rst, clk, load : in std_logic;
d_in : in std_logic_vector((WIDTH - 1) downto 0);
d_out : out std_logic_vector((WIDTH - 1) downto 0));

end Reg_with_load;

architecture beh of Reg_with_load is
begin

rocess(clk, rst)
egin
if (rst = '1') then d_out <= (others => '0');
elsif (clk'event and clk = '1") then

if (Toad = '1') then

d_out <= d_in;

end if;

end if;
end process;

end beh;

Finite State Machine

A simple example of how to make a controller with a finite number of states.

entity Controller is

port(
rst, clk : in std_logic;
input :in std_logic; -- Tnputs (from the datapath or external)
output : out std_logic); -- outputs (controls to the datapath or external)

end Controller;

architecture beh of Controller is
type state_type is (SO, S1, S2, S3, S4);
signal curr_state, next_state : state_type;

rocess (clk, rst) -- this process is the state register
egin
gf (rst = '1') then curr_state <= S0; -- upon reset enter state SO
elsif (clk'event and clk = '1') then curr_state <= next_state;
end if;
end process;
rocess (rst, input, curr_state) -- this process 1s the RoM table
egin
gutput <= '0"; -- 7nit default values for outputs in each state
case curr_state is -- handle each state (50, S1, S2, S3, S4)
when SO =>
output <= '0'; -- choose output for this state
next_state <= S1; -- choose next state
when S1 =>
output <= '1'; -- choose output for this state
next_state <= S3; -- choose next state
when others =>
end case;

end process
end beh;

