דף נוסחאות למעגלי מיתוג אלקטרוניים

1. הגדרות מתחים:

(עבור כניסה בהתאם!) מתחי ביותר הגבוה המוצא הגבוה מתחי : $V_{
m OH}\,, V_{
m OL}\,$ א.

במהפך
$$\frac{d\mathbf{V}_{\mathrm{out}}}{d\mathbf{V}_{\mathrm{in}}}$$
 = -1 פ"ע פריטריון מקובל: \mathbf{V}_{IH} , \mathbf{V}_{IL} במהפך: במהפך

- - . ביציאה: $\mathbf{t}_{PLH\,,\;PHL}$ נמדד בין 50% שינוי ביציאה: נמדד בין נמדד בין : $\mathbf{t}_{PLH\,,\;PHL}$ 0 עד 50% ביציאה, עבור פונקצית מדרגה בכניסה (
 - .90% בין או המוצא בין שינוי מתח הכניסה או המוצא בין 10% ל $t_{
 m f},\,t_{
 m r}$ •

$$P = P + P$$
 סטטי $P = P$ כללי.

r מצב של הסתברות של מצב r של הספק מצב r סכום על כל המצבים של מצב r סכום על כל המצבים r

$$\mathbf{p}_{\text{prim}} = \mathbf{f} \cdot \mathbf{V}_{\text{DD}} \cdot \mathbf{C} \cdot \Delta \mathbf{V}_{\text{C}}$$

4. פתרון משוואה דיפרנציאלית מהצורה:

$$\tau \frac{dV_{\rm C}(t)}{dt} + V_{\rm C}(t) = V_{\infty}$$

$$t = \tau \ln \left[\frac{V_0 - V_\infty}{V_C(t) - V_\infty} \right]$$

$$V_C(t) = \left(V_0 - V_\infty \right) e^{-t/\tau} + V_\infty$$

$$V_{\text{C}}\!\left(t=0\right)\!=V_{0}$$
 ; :מם תנאי התחלה

:MOS טרנזיסטור

אפקט המצע:

$$\gamma = \pm \frac{1}{C_{OY}} \sqrt{2q} \mathcal{E}_0 \mathcal{E}_S N_X$$
 כאשר $V_T = V_{T0} + \gamma \left(\sqrt{|V_{SB}| + |2\Phi_F|} - \sqrt{|2\Phi_F|} \right)$

NMOS:
$$(N_X = N_A)$$
 $\gamma > 0$ PMOS: $(N_X = N_D)$ $\gamma < 0$

6. משרואת הזרם:

זרם	טרנז' PMOS	טרנז' NMOS	מצב הולכה
$I_D = 0$	$V_{GS} > V_T$	$V_{GS} < V_{T}$	קטעון
$I_{D} = \frac{k}{2} [2(V_{GS} - V_{T})V_{DS} - V_{DS}^{2}]$	$V_{DS} \ge V_{GS} - V_T$	$V_{\rm DS} \leq V_{\rm GS}$ - $V_{\rm T}$	אוהמי
$I_{D} = \frac{k}{2} (V_{GS} - V_{T})^{2}$	$V_{DS} \le V_{GS} - V_T$	$V_{DS} \ge V_{GS} - V_T$	רוויה

NMOS

$$k = k' \frac{W}{L} = \mu \cdot C_{OX} \frac{W}{L}$$

שרנזיסטור ביפולרי

כיווני המתחים והזרמים הב"ל נקבעו כך שעבור מצב פעיל (קדמי) כולם חיוביים.

תחומי עבודה: (עבור NPN)

$$m V_{BE} <
m V_{BEon}$$
 שתי הדיודות קטועות : קטעון

$$i_{\rm C}=eta_{
m F}\,i_{
m B}$$
 בהולכה א ${
m V}_{
m BE}={
m V}_{
m BEon}$ בהולכה פעיל:

$$i_{
m C} = lpha_{
m F} \, i_{
m E}$$
 אחורי אחורי ארורי ארורי פממתח אחורי BC

$$i_{\rm C} < eta_{
m F} \, i_{
m B}$$
 ארניה: בממתה קדמי בממתה קדמי ארכויה: בממתה קדמי של בממתה קדמי ארכויה: פ

- $V_{
 m CE} > V_{
 m CEsat}$ עבור ($i_{
 m C} = eta_{
 m F} i_{
 m B}$) פעיל פעיל עדיין פעיל הניח כי הטרנזיסטור $^{-1}$
 - ישיש להפוך: PNP כל ההגדרות הנ"ל תקפות, אלא שיש להפוך:

$$V_{BE} \rightarrow V_{EB}$$
 ; $V_{CE} \rightarrow V_{EC}$; $V_{BC} \rightarrow V_{CB}$

Logical Effort

Term	Stage expression	Path expression
Logical effort	$g = \frac{R_i C_i}{R_{nv} C_{inv}}$	$G = \prod g_i$
Electrical effort	$h = C_{out} / C_{in}$	$H = C_{out-path} / C_{in-path}$
Branching effort	$b = \frac{Cout_{i-1}}{Cin_i}$	$B = \prod b_i$
Effort	f = gh	$F = GBH = \prod f_i$
Effort delay	f	$D_F = \sum f_i$ minimized for $f_i = F^{1/i}$
Parasitic delay	p	$P = \sum p_i$
Delay	d = f + p	$D = D_F + P$

$$au=\int_{\Gamma}^{T} p$$
 מאמץ לוגי והשהיה פרזיטית עבור שערים פשוטים: $b=\frac{\mu_n}{\mu_n(V_{DD}-V_T)}$ $b=\frac{\mu_n}{\mu_p}$. au מאמץ לוגי והשהיה פרזיטית עבור שערים פשוטים: au

Inverter: Logical Effort = $1 \cdot !$ Parasitic delay = P_{inv} *n Input NAND Logical Effort = (n+2)/3 Parasitic delay = nP_{inv} *n input NOR Logical Effort = (2n+1)/3 Parasitic delay = nP_{inv}

^{*}נכון עבור יחס ניידויות 2