Electromagnetic Waves

Maxwell Relations $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \quad \vec{\nabla} \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t}$

$$
\vec{\nabla} \cdot \vec{D}=0 \quad \vec{\nabla} \cdot \vec{B}=0
$$

Electric Displacement

$$
\vec{D}=\varepsilon_{0} \vec{E}+\vec{P}^{*}=\varepsilon_{r} \varepsilon_{0} \vec{E}
$$

* true only in linear and uniform media

Magnetic Inductance $\quad \vec{B}=\mu_{0}(\vec{H}+\vec{M})^{*}=\mu_{r} \mu_{0} \vec{H}$

* true only in linear and uniform media

Velocity of Light $\quad v=(\varepsilon \mu)^{-\frac{1}{2}} \quad c=\left(\varepsilon_{0} \mu_{0}\right)^{-\frac{1}{2}}$
Wave equations $\quad \nabla^{2} \vec{E}=\mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}} \quad \nabla^{2} \vec{H}=\mu \varepsilon \frac{\partial^{2} \vec{H}}{\partial t^{2}}$
Wave number/frequency $\quad k=\frac{2 \pi}{\lambda} \omega=k c=2 \pi f$
Index of Refraction

$$
n=\frac{c}{v}=\sqrt{\varepsilon}
$$

Plane Wave

$$
\vec{E}=\vec{E}_{0} \exp [i(\omega t-\vec{k} \cdot \vec{r})]
$$

Radial Wave

$$
\vec{E}=\vec{E}_{0} \frac{A}{r} \exp [i(\omega t-k r)]
$$

Medium Impedance

$$
\frac{E}{H}=\sqrt{\frac{\mu}{\varepsilon}}=\mathrm{Z} \quad Z_{0}=377 \Omega
$$

Field relations $\quad \vec{k} \perp \vec{E} \quad \vec{k} \perp \vec{H} \quad \vec{H} \perp \vec{E}$
Poynting vector $\quad \vec{S}=\vec{E} \times \vec{H}$ power per unit area
Poynting theorem flow of energy via closed surface
$\oint_{s}(\vec{E} \times \vec{H}) \cdot d \vec{a}=\int_{V} \vec{E} \cdot \vec{J}+\frac{\partial}{\partial t}\left(\frac{\varepsilon}{2} E^{2}+\frac{\mu}{2} H^{2}\right)+\vec{E} \frac{\partial \vec{P}}{\partial t}+\mu \vec{H} \frac{\partial \vec{M}}{\partial t} d V$
Energy Consumption $\quad \frac{1}{V}\langle P\rangle=\frac{1}{2} \omega \varepsilon_{0}|E|^{2} \operatorname{Im}\left(\chi_{e}\right)$
Wave Intensity $\quad I=\langle\vec{S}\rangle \quad$ if $T \gg \frac{2 \pi}{\omega}$
while "T" is the interval between measurements
Boundary conditions $\quad E_{1 \|}=E_{2 \|} \quad \varepsilon_{1} E_{1 \perp}=\varepsilon_{2} E_{2 \perp}$

$$
H_{1 \|}=H_{2 \|} \quad \mu_{1} H_{1 \perp}=\mu_{2} H_{2 \perp}
$$

Snell Law

$$
n_{i} \sin \theta_{i}=n_{t} \sin \theta_{t}
$$

Transmittance/Reflection

$$
\begin{aligned}
& r_{T E}=\frac{n_{i} \cos \theta_{i}-n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}} \quad t_{T E}=\frac{2 n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}} \\
& r_{T M}=\frac{n_{t} \cos \theta_{i}-n_{i} \cos \theta_{t}}{n_{i} \cos \theta_{t}+n_{t} \cos \theta_{i}} \quad t_{T M}=\frac{2 n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{t}+n_{t} \cos \theta_{i}} \\
& T=t^{2} \frac{n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}} \quad R=r^{2} \quad R+T=1
\end{aligned}
$$

Brewster Angle $\quad \vartheta=\arctan \left(\frac{n_{t}}{n_{i}}\right) \stackrel{\substack{n_{i} \approx 1.5}}{=} 56^{\circ}$
Polarization Linear $E_{0 x}=E_{0 y} \quad \Delta \varphi=0$
Circular $E_{0 x}=E_{0 y} \quad \Delta \varphi=\frac{\pi}{2}$
Elliptic else

Ray Optics

Conventions Distances from the right of the system are positive $\&$ from left are negative. Curvature radius with center from the right is positive. Angles beyond x-axis are positive.
\mathbf{v} - distance from system to image
\mathbf{u} - distance from system to object
Complex Matrices matrix of a system with $1,2 \ldots N$ components in a raw is $M=M_{N} \cdot \ldots M_{2} \cdot M_{1}$ Determinant propriety $\quad \operatorname{det} M=\left|\begin{array}{ll}A & B \\ C & D\end{array}\right|=\frac{n_{\text {in }}}{n_{\text {out }}}$

Transmition in media

$$
\binom{r_{\text {out }}}{\hat{r}_{\text {out }}}=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\binom{r_{\text {in }}}{\hat{r}_{\text {in }}}
$$

Planar Surface

$$
\binom{r_{\text {out }}}{\hat{r}_{\text {out }}}=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{n_{1}}{n_{2}}
\end{array}\right)\binom{r_{\text {in }}}{\hat{r}_{\text {in }}}
$$

Spherical Surface

$$
\binom{r_{\text {out }}}{\hat{r}_{\text {out }}}=\left(\begin{array}{cc}
1 & 0 \\
\left(\frac{n_{1}}{n_{2}}-1\right) \frac{1}{R} & \frac{n_{1}}{n_{2}}
\end{array}\right)\binom{r_{\text {in }}}{\hat{r}_{\text {in }}}
$$

Spherical Mirror

Thin lens

$$
\binom{r_{\text {out }}}{\hat{r}_{\text {out }}}=\left(\begin{array}{cc}
1 & 0 \\
\frac{2}{R} & 1
\end{array}\right)\binom{r_{\text {in }}}{\hat{r}_{\text {in }}}
$$

$$
\binom{r_{\text {out }}}{\hat{r}_{\text {out }}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)\binom{r_{\text {in }}}{\hat{r}_{\text {in }}}
$$

Focal point

Paths of Rays

1) ray through the center travels unchanged
2) parallel rays meet at the focal plane
3) parallel rays to the axis meet at the focus

Imaging if $\binom{r_{\text {out }}}{\hat{r}_{\text {out }}}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)\binom{r_{\text {in }}}{\hat{r}_{\text {in }}}$ then $B=0$

$$
\binom{r_{\text {out }}}{\hat{r}_{\text {out }}}=\left(\begin{array}{ll}
1 & v \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right)\binom{r_{\text {in }}}{\hat{r}_{\text {in }}}
$$

Effective focus

$$
\tilde{f}=-\frac{1}{c}
$$

Focal planes $\quad F_{2}=-\frac{a}{c}=a \tilde{f} \quad F_{1}=-\frac{d}{c}=d \tilde{f}$ Principal planes $\quad u_{p}=\frac{1-d}{c}=(d-1) \tilde{f} \quad v_{p}=\frac{1-a}{c}=(a-1) \tilde{f}$
planes for witch the system acts like thin lens Imaging condition $\frac{1}{u-u_{p}}+\frac{1}{v-v_{p}}=\frac{1}{f}$

Newton equation

$$
\left(A-\frac{v}{f}\right)\left(D-\frac{u}{f}\right)=1
$$

Magnification
Linear $m=A=-\frac{v-v_{p}}{u-u_{p}}$

$$
m=1 \text { for } v=v_{p} u=u_{p}
$$

Angle $D=\frac{1}{m}$
Image formation
$v>0$ Real \& inverted image $v<0$ Imaginary \& straight image $f<0$ Inverted image $f>0$ Straight image

Approximation Conditions

Phase approximation $k d=k\left(d^{2}+x^{2}+y^{2}\right)^{\frac{1}{2}} \approx k d\left(1+\frac{1}{2} \frac{\rho^{2}}{d^{2}}\right)+\ldots$
d - distance to screen
r-distance off-axis of the aperture
Point source requirement $D \rho / d_{1}<\frac{1}{4} \lambda$
D - effective diameter of the source ρ-radius of the aperture
Paraxial approximation $\quad \frac{x}{d}, \frac{y}{d} \ll 1 \quad \sin x \approx x$
Maximum divergence angle $\quad \alpha_{\text {max }}=\arctan \left(\frac{a}{d}\right) \cong \frac{a}{d}$ "a" - radius of the diffraction pattern
Fresnel number
$N_{F} \equiv \frac{a^{2}}{\lambda d}$
Inverse Fresnel number
$N_{F}^{\prime} \equiv \frac{b^{2}}{\lambda d}$
"b" - radius of the aperture
Fresnel diffraction condition $\quad \frac{1}{4} N_{F} \alpha_{\text {max }}^{2} \ll 1$
Fraunhofer diffraction conditions $\quad N_{F}^{\prime} \ll 1 \quad N_{F} \ll 1$

Interference

Two monochromatic waves $I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \varphi$
Phase difference $\quad \varphi=\mathbf{k}_{1} \cdot \mathbf{r}_{1}-\mathbf{k}_{2} \cdot \mathbf{r}_{2}+\left(\varepsilon_{1}-\varepsilon_{2}\right)$
Equal Amplitude

$$
I=4 I_{0} \cos ^{2} \frac{\varphi}{2}
$$

Beating $I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \left[2 \pi\left(v_{2}-v_{1}\right) t+\varepsilon(x, y)\right]$
Fringe velocity $\quad \frac{d x}{d t}=-\frac{(d \varphi / d t)_{x}}{(d \varphi / d x)_{t}}$

Furrier Transform Proprieties

General proprieties

$$
\begin{aligned}
& F T\left[f\left(x-x_{0}\right)\right]=e^{-2 \pi i v x_{0}} F(v) \\
& F T\left[f\left(\frac{x}{x_{0}}\right)\right]=\left|x_{0}\right| F\left(x_{0} v\right) \\
& F T[f(x) f(y)]=F\left(v_{x}\right) F\left(v_{y}\right) \\
& F T\left[f_{1} \otimes f_{2}\right]=F_{1}(v) \cdot F_{2}(v) \\
& F T[F T[f(x, y)]]=f(-x,-y)
\end{aligned}
$$

$f(x)$ symmetrical $\rightarrow F(-v)=F^{*}(v)$
$f(x)$ real \& symmetrical $\rightarrow F(v)$ also
$F(\bullet \bullet)=F(\bullet) \cdot F(\cdot \quad)$

Useful transforms

$F T\left[\operatorname{rect}\left(\frac{x}{a}\right)\right]=a \operatorname{sinc}\left(a v_{x}\right) \equiv a \frac{\sin \left(\pi a v_{x}\right)}{\pi a v_{x}}$
while $\operatorname{rect}\left(\frac{x}{a}\right)=1 \quad|\mathrm{x}| \leq a / 2$
$F T[\operatorname{circ}(r)]=\frac{J_{1}\left(2 \pi v_{p}\right)}{v_{p}} \quad$ where $v_{p}^{2}=v_{x}^{2}+v_{y}^{2}$

Useful Fresnel Integrals on axis

Circular hole $\quad I=|g|^{2}=\frac{8 A^{2} \pi^{2}}{k^{2}}\left(1-\cos \frac{k \rho^{2}}{2 z_{0}}\right)$
Circular disc $\quad I=\frac{4 A^{2} \pi^{2}}{k^{2}}$

Furrier Optics

Spatial Frequency $\quad v_{x}=\frac{k_{x}}{2 \pi}=\frac{x}{\lambda \mathrm{~d}} \quad v_{y}=\frac{k_{y}}{2 \pi}=\frac{y}{\lambda \mathrm{~d}}$
Incident angles $\quad \sin \theta_{x}=\lambda v_{x} \quad \sin \theta_{y}=\lambda v_{y}$
in paraxial approximation $\theta_{x}=\lambda v_{x} \theta_{y}=\lambda v_{y}$
Spatial periods

$$
\Lambda_{x}=v_{x}^{-1} \quad \Lambda_{y}=v_{y}^{-1} \quad \Lambda_{z}=v_{z}^{-1}
$$

Distraction by obstacle/Lens $\quad \theta=\frac{\lambda}{d}$
Phase mask distraction if $f(x, y)=e^{-2 \pi i \phi(x, y)}$
then

$$
v_{x}(x)=\frac{\partial \phi}{\partial x} \quad v_{y}(y)=\frac{\partial \phi}{\partial y}
$$

Input-Output Relations in linear shift-invariant system (without magnification)

$$
\begin{aligned}
& G\left(v_{x}, v_{y}\right)=H\left(v_{x}, v_{y}\right) F\left(v_{x}, v_{y}\right) \\
& g(x, y)=f(x, y) \otimes h(x, y)
\end{aligned}
$$

Transfer Function

Free space $H=\exp \left[-2 \pi i\left(\frac{1}{\lambda^{2}}-v_{x}^{2}-v_{y}^{2}\right)^{\frac{1}{2}} d\right]$
Far field $\quad v_{p}^{2} \leq \lambda^{-2} \quad \rightarrow \quad|H|=1$ where $\quad v_{p}^{2}=v_{x}^{2}+v_{y}^{2}$
Near field $\quad v_{p}^{2} \geq \lambda^{-2} \quad|H|=e^{-2 \pi d \sqrt{\frac{2}{\lambda}\left(v_{p}-\lambda^{-1}\right)}}$ here v_{p} is a Cut-Off frequency
Fresnel Approx. $H=H_{0} \exp \left[i \pi \lambda d\left(v_{x}^{2}+v_{y}^{2}\right)\right]$ where $H_{0}=\exp (-i k d)$
Impulse-Response Function a response of the system to point source at the origin (δ func.). Inverse FT of the Transfer function.

Free Space

$$
h(x, y)=h_{0} \exp \left[-i k \frac{x^{2}+y^{2}}{2 d}\right]
$$

in Fresnel approx. while $h_{0}=\frac{i}{\lambda d} e^{-i k d}$
Infinite Opening Lens

$$
h(x, y)=h_{1} h_{2} \exp \left[-i \frac{k}{2 f}\left(x^{2}+y^{2}\right)\right] \delta\left(-\frac{x}{\lambda d_{2}},-\frac{y}{\lambda d_{2}}\right)
$$

Finite Opening Lens $\quad h(x, y)=h_{1} h_{2} \hat{P}\left(-\frac{x}{\lambda d_{2}},-\frac{y}{\lambda d_{2}}\right)$
while \hat{P} is FT of the aperture (pupil) function and the varying phase was neglected.

Diffraction pattern width

Circular: $\quad \Delta=2 r_{1}=\frac{1.22 \lambda f}{D} \quad \mathrm{D}$ - mask diameter
Rectangular: $\quad \Delta_{x}=\frac{2 \lambda f}{b_{x}} \quad b_{x}-$ " x " mask width Furrier Transform by Lens

$$
g(x, y)=\frac{i}{\lambda f} e^{-i k(f+d)} e^{i \pi \lambda(d-f) \frac{x^{2}+y^{2}}{(\lambda f)^{2}}} F\left(\frac{x}{\lambda f}, \frac{y}{\lambda f}\right)
$$

plane wave is focused at $x_{0}=\lambda f v_{x} \quad \mathrm{y}_{0}=\lambda f v_{y}$

Fraunhofer Diffraction

$$
g(x, y)=h_{0} \exp \left[-i \frac{\pi}{\lambda d}\left(x^{2}+y^{2}\right)\right] F\left(\frac{x}{\lambda d}, \frac{y}{\lambda d}\right)
$$

