Electromagnetic Waves	
Maxwell Relations $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$	Conventio
$\vec{\nabla} \cdot \vec{D} = 0 \qquad \vec{\nabla} \cdot \vec{B} = 0$	
Electric Displacement $\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_r \varepsilon_0 \vec{E}$	
* true only in linear and uniform media	
Magnetic Inductance $\vec{B} = \mu_0 \left(\vec{H} + \vec{M}\right) = \mu_r \mu_0 \vec{H}$	Complex I
* true only in linear and uniform media	
Velocity of Light $v = (\varepsilon \mu)^2$ $c = (\varepsilon_0 \mu_0)^2$	Determina
Wave equations $\nabla^2 \vec{E} = \mu \varepsilon \frac{\partial^2 E}{\partial t^2} \nabla^2 \vec{H} = \mu \varepsilon \frac{\partial^2 H}{\partial t^2}$	Transmiti
Wave number/frequency $k = \frac{2\pi}{\lambda} \omega = kc = 2\pi f$	
Index of Refraction $n = \frac{c}{v} = \sqrt{\varepsilon}$	Planar Su
Plane Wave $\vec{E} = \vec{E}_0 \exp\left[i\left(\omega t - \vec{k} \cdot \vec{r}\right)\right]$	Spherical
Radial Wave $\vec{E} = \vec{E}_0 \frac{A}{r} \exp[i(\omega t - kr)]$	Spherical
Medium Impedance $\frac{E}{\pi} = \sqrt{\frac{\mu}{2}} = Z \qquad Z_0 = 377\Omega$	1
Field relations $\vec{k} \mid \vec{F} \vec{k} \mid \vec{H} \vec{H} \mid \vec{F}$	Thin lens
Poynting vector $\vec{S} = \vec{E} \times \vec{H}$ power per unit area	
Poynting theorem flow of energy via closed surface $2\sqrt{1-2}$	Foc
$\oint_{s} \left(\vec{E} \times \vec{H} \right) \cdot d\vec{a} = \int_{V} \vec{E} \cdot \vec{J} + \frac{\partial}{\partial t} \left(\frac{\varepsilon}{2} E^{2} + \frac{\mu}{2} H^{2} \right) + \vec{E} \frac{\partial P}{\partial t} + \mu \vec{H} \frac{\partial M}{\partial t} dV$	Paths of R 1)
Energy Consumption $\frac{1}{V}\langle P \rangle = \frac{1}{2}\omega\varepsilon_0 E ^2 \operatorname{Im}(\chi_e)$	2)
Wave Intensity $I = \langle \vec{S} \rangle$ if $T \gg \frac{2\pi}{\omega}$	J
while "T" is the interval between measurements Poundary conditions $E = E$ $C = C = C E$	Imaging
$E_{1 } - E_{2 } \qquad z_1 E_{1\perp} - z_2 E_{2\perp}$ $H_{1 } = H_{2 } \qquad \mu_1 H_{1\perp} = \mu_2 H_{2\perp}$	
Snell Law $n_i \sin \theta_i = n_t \sin \theta_t$	
Transmittance/Reflection	Effective
$r_{TE} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_i \cos \theta_i} t_{TE} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_i \cos \theta_i}$	Focal pla
$n_i \cos \theta_i - n_i \cos \theta_t \qquad n_i \cos \theta_i - n_i \cos \theta_t$	n nincipal p
$r_{TM} = \frac{1}{n_i \cos \theta_t + n_t \cos \theta_i} t_{TM} = \frac{1}{n_i \cos \theta_t + n_t \cos \theta_i}$	Imaging
$T = t^2 \frac{n_t \cos \theta_t}{n_i \cos \theta_i} \qquad R = r^2 \qquad R + T = 1$	Newton eq
Brewster Angle $\mathscr{G} = \arctan\left(\frac{n_t}{n_c}\right)^{n_t \approx 1.5} = 56^\circ$	Magnifica
Polarization Linear $E_{0x} = E_{0y} \Delta \varphi = 0$	
Circular $E_{0x} = E_{0y} \Delta \varphi = \frac{\pi}{2}$	Image for
<i>Elliptic</i> else	

Ray Optics ns Distances from the right of the system are positive & from left are negative. Curvature radius with center from the right is positive. Angles beyond x-axis are positive. \mathbf{v} – distance from system to image **u** – distance from system to object **Matrices** matrix of a system with 1,2...N components in a raw is $M = M_{N} \cdot ... M_{2} \cdot M_{1}$ $\det M = \begin{vmatrix} A & B \\ C & D \end{vmatrix} = \frac{n_{in}}{n}$ ant propriety $\begin{pmatrix} r_{out} \\ \hat{r}_{out} \end{pmatrix} = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} r_{in} \\ \hat{r}_{in} \end{pmatrix}$ on in media $\begin{pmatrix} r_{out} \\ \hat{r}_{out} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{n_1}{n} \end{pmatrix} \begin{pmatrix} r_{in} \\ \hat{r}_{in} \end{pmatrix}$ rface **Surface** $\begin{pmatrix} r_{out} \\ \hat{r}_{out} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \left(\frac{n_1}{n_2} - 1\right)\frac{1}{R} & \frac{n_1}{n_2} \end{pmatrix} \begin{pmatrix} r_{in} \\ \hat{r}_{in} \end{pmatrix}$ **Mirror** $\begin{pmatrix} r_{out} \\ \hat{r}_{out} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{2}{p} & 1 \end{pmatrix} \begin{pmatrix} r_{in} \\ \hat{r}_{in} \end{pmatrix}$ $\begin{pmatrix} r_{out} \\ \hat{r}_{out} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} r_{in} \\ \hat{r}_{in} \end{pmatrix}$ cal point $\frac{1}{f} = \frac{n_2 - n_1}{n} \left(\frac{1}{R} - \frac{1}{R} \right)$ ays ray through the center travels unchanged parallel rays meet at the focal plane parallel rays to the axis meet at the focus if $\begin{pmatrix} r_{out} \\ \hat{r} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} r_{in} \\ \hat{r} \end{pmatrix}$ then B = 0 $\begin{pmatrix} r_{out} \\ \hat{r}_{out} \end{pmatrix} = \begin{pmatrix} 1 & v \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \begin{pmatrix} r_{in} \\ \hat{r}_{in} \end{pmatrix}$ focus $\tilde{f} = -\frac{1}{4}$

ifective focus $\tilde{f} = -\frac{1}{c}$ *ocal planes* $F_2 = -\frac{a}{c} = a\tilde{f}$ $F_1 = -\frac{d}{c} = d\tilde{f}$ *rincipal planes* $u_p = \frac{1-d}{c} = (d-1)\tilde{f}$ $v_p = \frac{1-a}{c} = (a-1)\tilde{f}$ *planes for witch the system acts like thin lensnaging condition* $\frac{1}{u-u_p} + \frac{1}{v-v_p} = \frac{1}{\tilde{f}}$ **vton equation** $\left(A - \frac{v}{\tilde{f}}\right) \left(D - \frac{u}{\tilde{f}}\right) = 1$ *gnification*Linear $m = A = -\frac{v-v_p}{u-u_p}$ *m* = 1 for $v = v_p$ $u = u_p$ Angle $D = \frac{1}{m}$ *v* > 0Real & inverted imagev < 0Imaginary & straight image

f < 0 Inverted image f > 0 Straight image

Approximation Conditions Phase approximation $kd = k\left(d^2 + x^2 + y^2\right)^{\frac{1}{2}} \approx kd\left(1 + \frac{1}{2}\frac{t^2}{d^2}\right) + \dots$ d - distance to screen *r* - distance off-axis of the aperture **Point source requirement** $D\rho/d_1 < \frac{1}{4}\lambda$ D - effective diameter of the source ρ - radius of the aperture **Paraxial approximation** $\frac{x}{d}, \frac{y}{d} \ll 1$ $\sin x \approx x$ $\alpha_{\max} = \arctan\left(\frac{a}{d}\right) \cong \frac{a}{d}$ Maximum divergence angle "a" - radius of the diffraction pattern $N_{\rm F} \equiv \frac{a^2}{1d}$ **Fresnel number** $N'_{E} \equiv \frac{b^2}{2d}$ **Inverse Fresnel number** "b" - radius of the aperture $\frac{1}{4}N_F\alpha_{\rm max}^2 \ll 1$ **Fresnel diffraction condition Fraunhofer diffraction conditions** $N'_F \ll 1$ $N_F \ll 1$ Interference **Two monochromatic waves** $I = I_1 + I_2 + 2\sqrt{I_1I_2} \cos \varphi$ *Phase difference* $\varphi = \mathbf{k}_1 \cdot \mathbf{r}_1 - \mathbf{k}_2 \cdot \mathbf{r}_2 + (\varepsilon_1 - \varepsilon_2)$ Equal Amplitude $I = 4I_0 \cos^2 \frac{\varphi}{2}$ **Beating** $I = I_1 + I_2 + 2\sqrt{I_1I_2} \cos[2\pi(v_2 - v_1)t + \varepsilon(x, y)]$ $\frac{dx}{dt} = -\frac{\left(\frac{d\varphi}{dt}\right)_x}{\left(\frac{d\varphi}{dx}\right)}$ Fringe velocity **Furrier Transform Proprieties General proprieties** $FT\left[f\left(x-x_{0}\right)\right]=e^{-2\pi i\nu x_{0}}F\left(\nu\right)$ $FT\left[f\left(\frac{x}{x_0}\right)\right] = \left|x_0\right|F\left(x_0\nu\right)$ $FT\left[f(x)f(y)\right] = F(v_x)F(v_y)$ $FT[f_1 \otimes f_2] = F_1(v) \cdot F_2(v)$ $FT\left[FT\left[f(x,y)\right]\right] = f(-x,-y)$ f(x) symmetrical $\rightarrow F(-v) = F^*(v)$ f(x) real & symmetrical $\rightarrow F(v)$ also $F(\bullet \bullet) = F(\bullet) \cdot F(\bullet \bullet)$ Useful transforms $FT\left[rect\left(\frac{x}{a}\right)\right] = a \operatorname{sinc}\left(av_{x}\right) \equiv a \frac{\sin(\pi av_{x})}{\pi av}$ while $rect\left(\frac{x}{a}\right) = 1$ $|\mathbf{x}| \le a/2$ where $v_p^2 = v_x^2 + v_y^2$ $FT\left[\operatorname{circ}\left(r\right)\right] = \frac{J_{1}\left(2\pi v_{p}\right)}{v}$ **Useful Fresnel Integrals on axis** *Circular hole* $I = |g|^2 = \frac{8A^2\pi^2}{k^2} \left(1 - \cos \frac{k\rho^2}{2z_0}\right)$ *Circular disc* $I = \frac{4A^2\pi^2}{r^2}$

Furrier Optics Spatial Frequency $V_{y} = \frac{k_{x}}{2\pi} = \frac{x}{2d}$ $V_{y} = \frac{k_{y}}{2\pi} = \frac{y}{2d}$ **Incident angles** $\sin\theta_{\rm w} = \lambda v_{\rm w} \quad \sin\theta_{\rm w} = \lambda v_{\rm w}$ in paraxial approximation $\theta_{y} = \lambda v_{y} \theta_{y} = \lambda v_{y}$ $\Lambda_{x} = \nu_{x}^{-1} \quad \Lambda_{y} = \nu_{y}^{-1} \quad \Lambda_{z} = \nu_{z}^{-1}$ **Spatial periods** Distraction by obstacle/Lens $\theta = \frac{\lambda}{l}$ **Phase mask distraction** if $f(x, y) = e^{-2\pi i \phi(x, y)}$ $V_{x}(x) = \frac{\partial \phi}{\partial x} \quad V_{y}(y) = \frac{\partial \phi}{\partial y}$ then in linear shift-invariant **Input-Output Relations** system (without magnification) $G(v_x, v_y) = H(v_x, v_y)F(v_x, v_y)$ $g(x, y) = f(x, y) \otimes h(x, y)$ **Transfer Function Free space** $H = \exp \left[-2\pi i \left(\frac{1}{\lambda^2} - v_x^2 - v_y^2 \right)^{\frac{1}{2}} d \right]$ $v_p^2 \leq \lambda^{-2} \quad \rightarrow \quad |H| = 1$ Far field where $v_p^2 = v_x^2 + v_y^2$ Near field $v_p^2 \ge \lambda^{-2} |H| = e^{-2\pi d \sqrt{\frac{2}{\lambda} (v_p - \lambda^{-1})}}$ here v_p is a *Cut-Off* frequency **Fresnel Approx.** $H = H_0 \exp\left[i\pi\lambda d\left(v_x^2 + v_y^2\right)\right]$ where $H_0 = \exp(-ikd)$ **Impulse-Response Function** a response of the system to point source at the origin (δ func.). Inverse FT of the Transfer function. $h(x, y) = h_0 \exp \left| -ik \frac{x^2 + y^2}{2d} \right|$ Free Space in Fresnel approx. while $h_0 = \frac{i}{\lambda d} e^{-ikd}$ Infinite Opening Lens $h(x, y) = h_1 h_2 \exp\left[-i\frac{k}{2f}\left(x^2 + y^2\right)\right] \delta\left(-\frac{x}{\lambda d_2}, -\frac{y}{\lambda d_2}\right)$ Finite Opening Lens $h(x, y) = h_1 h_2 \hat{P} \left(-\frac{x}{\lambda d_2}, -\frac{y}{\lambda d_2} \right)$ while \hat{P} is FT of the aperture (pupil) function and the varying phase was neglected. Diffraction pattern width *Circular*: $\Delta = 2r_1 = \frac{1.22\lambda f}{D}$ D - mask diameter *Rectangular*: $\Delta_x = \frac{2\lambda f}{b_x}$ $b_x - x^*$ mask width Furrier Transform by Lens $g(x,y) = \frac{i}{\lambda f} e^{-ik(f+d)} e^{i\pi\lambda(d-f)\frac{x^2+y^2}{(\lambda f)^2}} F\left(\frac{x}{\lambda f}, \frac{y}{\lambda f}\right)$ plane wave is focused at $x_0 = \lambda f v_y$, $y_0 = \lambda f v_y$ **Fraunhofer Diffraction** $g(x, y) = h_0 \exp\left[-i\frac{\pi}{2d}\left(x^2 + y^2\right)\right] F\left(\frac{x}{2d}, \frac{y}{2d}\right)$